【题目】为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:
![]()
(1)已知该校有
名学生,试估计全校学生中,每天学习不足
小时的人数.
(2)若从学习时间不少于
小时的学生中选取
人,设选到的男生人数为
,求随机变量
的分布列.
(3)试比较男生学习时间的方差
与女生学习时间方差
的大小.(只需写出结论)
【答案】(1)240人(2)见解析(3)![]()
【解析】试题分析:(1)根据题意,由折线图分析可得20名学生中有12名学生每天学习不足4小时,进而可以估计校400名学生中天学习不足4小时的人数;
(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4;由古典概型公式计算可得X=0,1,2,3,4的概率,进而可得随机变量X的分布列;
(3)根据题意,分析折线图,求出男生、女生的学习时间方差,比较可得答案.
试题解析:
(1)由折线图可得共抽取了
人,其中男生中学习时间不足
小时的有
人,女生中学习时间不足
小时的有
人.
∴可估计全校中每天学习不足
小时的人数为:
人.
(2)学习时间不少于
本的学生共
人,其中男学生人数为
人,故
的所有可能取值为
,
,
,
,
.
由题意可得
;
;
;
;
.
所以随机变量
的分布列为
|
|
|
|
|
|
|
|
|
|
|
|
∴均值
.
(3)由折线图可得
.
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱台
中,点
在
上,且
,点
是
内(含边界)的一个动点,且有平面
平面
,则动点
的轨迹是( )
![]()
A. 平面B. 直线C. 线段,但只含1个端点D. 圆
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=
(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为
,半径等于
米的弧田,按照上述经验公式计算所得弧田面积约是 ![]()
![]()
A.
平方米 B.
平方米
C.
平方米 D.
平方米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-5:不等式选讲】
已知函数f(x)=|x+1|+|x-3|.
(1)若关于x的不等式f(x)<a有解,求实数a的取值范围:
(2)若关于x的不等式f(x)<a的解集为(b,
),求a+b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站
年
月促销费用
(万元)和产品销量
(万件)的具体数据.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
(系数精确到
);
(2)已知
月份该购物网站为庆祝成立
周年,特定制奖励制度:用
(单位:件)表示日销量,若
,则每位员工每日奖励
元;若
,每位员工每日奖励
元;若
,则每位员工每日奖励
元.现已知该网站
月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约为多少元.(当月奖励金额总数精确到百分位)
参考数据:
,
,其中
分别为第
个月的促销费用和产品销量,
.
参考公式:①对于一组数据
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
②若随机变量
服从正态分布
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面六个命题中,其中正确的命题序号为______________.
①函数
的最小正周期为
;
②函数
的图象关于点
对称;
③函数
的图象关于直线
对称;
④函数
,
的单调递减区间为
;
⑤将函数
向右平移
(
)个单位所得图象关于
轴对称,则
的最小正值为
;
⑥关于
的方程
的两个实根中,一个根比1大,一个根比-1小,则
的取值范围为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形几何学是美籍法国数学家伯努瓦.
.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生产成一个数形图,则第13行的实心圆点的个数是______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的
,
两种芯片都已经获得成功.该公司研发芯片已经耗费资金
千万元,现在准备投入资金进行生产.经市场调查与预测,生产
芯片的毛收入与投入的资金成正比,已知每投入
千万元,公司获得毛收入
千万元;生产
芯片的毛收入
(千万元)与投入的资金
(千万元)的函数关系为
,其图像如图所示.
![]()
(1)试分别求出生产
,
两种芯片的毛收入
(千万元)与投入资金
(千万元)的函数关系式;
(2)现在公司准备投入
亿元资金同时生产
,
两种芯片,求可以获得的最大利润是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com