【题目】已知,若存在三个不同实数使得,则的取值范围是( )
A.B.C.D.(0,1)
【答案】C
【解析】
先画出分段函数f(x)的图象,然后根据图象分析a、b、c的取值范围,再根据对数函数以及绝对值函数的性质得出bc=1,即可得到abc的取值范围.
由题意,画出函数f(x)的图象大致如图所示:
∵存在三个不同实数a,b,c,使得f(a)=f(b)=f(c),可假设a<b<c,
∴根据函数图象,可知:﹣2<a≤0,0<b<1,c>1.又∵f(b)=f(c),
∴|log2019b|=|log2019c|,即:﹣log2019b=log2019c.∴log2019b+log2019c=0.
∴log2019bc=0,即bc=1.∴abc=a.∵﹣2<a≤0,∴﹣2<abc≤0.
故选:C.
科目:高中数学 来源: 题型:
【题目】下列结论中正确的是______.
(1)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;
(2)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;
(3)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;
(4)将图像上所有点的横坐标变为原来的倍,再将图像向左平移个单位,得到的图像;
(5)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:
(1)已知该校有名学生,试估计全校学生中,每天学习不足小时的人数.
(2)若从学习时间不少于小时的学生中选取人,设选到的男生人数为,求随机变量的分布列.
(3)试比较男生学习时间的方差与女生学习时间方差的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面底面,底面是平行四边形, , , , 为的中点,点在线段上.
(Ⅰ)求证: ;
(Ⅱ)试确定点的位置,使得直线与平面所成的角和直线与平面所成的角相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,,给定下列命题:
①若方程有两个不同的实数根,则;
②若方程恰好只有一个实数根,则;
③若,总有恒成立,则;
④若函数有两个极值点,则实数.
则正确命题的个数为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.
试问:(1)能组成多少个不同的五位偶数?
(2)五位数中,两个偶数排在一起的有几个?
(3)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆,点是椭圆上的任意一点,直线过点且是椭圆的“切线”.
(1)证明:过椭圆上的点的“切线”方程是;
(2)设,是椭圆长轴上的两个端点,点不在坐标轴上,直线,分别交轴于点,,过的椭圆的“切线”交轴于点,证明:点是线段的中点;
(3)点不在轴上,记椭圆的两个焦点分别为和,判断过的椭圆的“切线”与直线,所成夹角是否相等?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com