精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
p
x
+m(p≠0)是奇函数.
(1)求m的值.
(2)当x∈[1,2]时,求f(x)的最大值和最小值.
(1)∵f(x)是奇函数,
∴f(-x)=-f(x).
∴-x-
p
x
+m=-x-
p
x
-m.
∴2m=0,
∴m=0.
(2)(ⅰ)当p<0时,据定义可证明f(x)在[1,2]上为增函数.
∴f(x)max=f(2)=2+
p
2
,f(x)min=f(1)=1+p.

(ⅱ)当p>0时,据定义可证明f(x)在(0,
p
]上是减函数,在[
p
,+∞)上是增函数.
①当
p
<1,即0<p<1时,f(x)在[1,2]上为增函数,
∴f(x)max=f(2)=2+
p
2
,f(x)min=f(1)=1+p.
②当
p
∈[1,2]时,f(x)在[1,p]上是减函数.在[p,2]上是增函数.
f(x)min=f(
p
)=2
p

f(x)max=max{f(1),f(2)}=max{1+p,2+
p
2
}.
当1≤p≤2时,1+p≤2+
p
2
,f(x)max=f(2);
当2<p≤4时,1+p≥2+
p
2
,f(x)max=f(1).
③当
p
>2,即p>4时,f(x)在[1,2]上为减函数,
∴f(x)max=f(1)=1+p,f(x)min=f(2)=2+
p
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案