精英家教网 > 高中数学 > 题目详情
20.《九章算数》是我国古代数学名著,在其中有道“竹九问题”“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容各多少?”意思为:今有竹九节,下三节容量和为4升,上四节容量之和为3升,且每一节容量变化均匀(即每节容量成等差数列),问每节容量各为多少?在这个问题中,中间一节的容量为(  )
A.$\frac{7}{2}$B.$\frac{37}{33}$C.$\frac{10}{11}$D.$\frac{67}{66}$

分析 由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,an,公差为d,利用等差数列的前n项和公式和通项公式列出方程组,求出首项和公差,由此能求出中间一节的容量.

解答 解:由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,an,公差为d,
∴$\left\{\begin{array}{l}{{S}_{3}=3{a}_{1}+\frac{3×2}{2}d=4}\\{{{a}_{6}+a}_{7}+{a}_{8}+{a}_{9}=4{a}_{1}+26d=3}\end{array}\right.$,
解得a1=$\frac{95}{66}$,d=-$\frac{7}{66}$,
∴中间一节的容量a5=a1+4d=$\frac{95}{66}-\frac{28}{66}$=$\frac{67}{66}$.
故选:D.

点评 本题考查等差数列的中间项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.若过原点O的直线与圆C:(x-2)2+y2=1相交于P、Q两点.
(1)求$\overrightarrow{CP}$•$\overrightarrow{CQ}$的取值范围;
(2)求△CPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知点F1,F2是椭圆C1:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的左、右焦点,点P是椭圆C2:$\frac{x^2}{2}$+y2=1上异于其长轴端点的任意动点,直线PF1,PF2与椭圆C1的交点分别是A,B和M,N,记直线AB,MN的斜率分别为k1,k2
(1)求证:k1•k2为定值;
(2)求|AB|•|MN|得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点(3,9)在函数f(x)=1+ax的图象上,则log${\;}_{\frac{1}{4}}$a+loga8=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,点M在线段EC上.
(Ⅰ)当点M为EC中点时,求证:BM∥平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为$\frac{\sqrt{6}}{6}$时,求棱锥M-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设变量x,y满足$\left\{\begin{array}{l}{x-2y+2≥0}\\{x+y-2≥0}\\{x≤3}\end{array}\right.$,则z=2x-y的最大值为(  )
A.0B.3C.$\frac{7}{2}$D.7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥S-ABCD中,底面ABCD为菱形,E、P、Q分别是棱AD、SC、AB的中点,且SE⊥平面ABCD.
(1)求证:PQ∥平面SAD;
(2)求证:平面SAC⊥平面SEQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.样本容量为100的频率分布直方图如图所示,则样本数据落在[14,18]内的频数为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“x<0”是“$\frac{1}{x}$<1”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.即不充分也不必要条件

查看答案和解析>>

同步练习册答案