精英家教网 > 高中数学 > 题目详情
11.如图,已知点F1,F2是椭圆C1:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的左、右焦点,点P是椭圆C2:$\frac{x^2}{2}$+y2=1上异于其长轴端点的任意动点,直线PF1,PF2与椭圆C1的交点分别是A,B和M,N,记直线AB,MN的斜率分别为k1,k2
(1)求证:k1•k2为定值;
(2)求|AB|•|MN|得取值范围.

分析 (1)设P(x0,y0),则$\frac{{x}_{0}^{2}}{2}$+${y}_{0}^{2}$=1.利用斜率计算公式与椭圆的标准方程可得k1•k2为定植.
(2)设AB:y=k1(x+$\sqrt{2}$),A(x1,y1),B(x2,y2),与椭圆方程联立化为:$(2{k}_{1}^{2}+1)$x2+4$\sqrt{2}$${k}_{1}^{2}$x+$4{k}_{1}^{2}$-4=0,△>0,|AB|=a+ex1+a+ex2=$\frac{4({k}_{1}^{2}+1)}{2{k}_{1}^{2}+1}$.同理可得:|MN|=$\frac{4({k}_{2}^{2}+1)}{2{k}_{2}^{2}+1}$.即可得出|AB|•|MN|取值范围.

解答 (1)证明:由题意可得:F1($-\sqrt{2}$,0),F2($\sqrt{2}$,0),设P(x0,y0),则$\frac{{x}_{0}^{2}}{2}$+${y}_{0}^{2}$=1.
∴k1•k2=$\frac{{y}_{0}}{{x}_{0}+\sqrt{2}}$$•\frac{{y}_{0}}{{x}_{0}-\sqrt{2}}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-2}$=$\frac{1}{2}×\frac{2-{x}_{0}^{2}}{{x}_{0}^{2}-2}$=-$\frac{1}{2}$为定植.
(2)解:设AB:y=k1(x+$\sqrt{2}$),A(x1,y1),B(x2,y2),联立$\left\{\begin{array}{l}{y={k}_{1}(x+\sqrt{2})}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$,
化为:$(2{k}_{1}^{2}+1)$x2+4$\sqrt{2}$${k}_{1}^{2}$x+$4{k}_{1}^{2}$-4=0,△>0,可得k1∈R,x1+x2=$\frac{-4\sqrt{2}{k}_{1}^{2}}{2{k}_{1}^{2}+1}$,
x1•x2=|AB|=a+ex1+a+ex2=4-$\frac{\sqrt{2}}{2}$×$\frac{4\sqrt{2}{k}_{1}^{2}}{2{k}_{1}^{2}+1}$=$\frac{4({k}_{1}^{2}+1)}{2{k}_{1}^{2}+1}$.同理可得:|MN|=$\frac{4({k}_{2}^{2}+1)}{2{k}_{2}^{2}+1}$.
∴|AB|•|MN|=$\frac{4({k}_{1}^{2}+1)}{2{k}_{1}^{2}+1}$×$\frac{4({k}_{2}^{2}+1)}{2{k}_{2}^{2}+1}$=8+$\frac{2}{1+({k}_{1}^{2}+{k}_{2}^{2})}$.
令u=1+$({k}_{1}^{2}+{k}_{2}^{2})$=1+${k}_{1}^{2}$+$\frac{1}{4{k}_{1}^{2}}$≥1+2$\sqrt{{k}_{1}^{2}×\frac{1}{4{k}_{1}^{2}}}$=2,当且仅当${k}_{1}^{2}$=$\frac{1}{2}$时取等号.
∴∴|AB|•|MN|=8+$\frac{2}{u}$∈(8,9].

点评 本题考查了椭圆的第二定义标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、基本不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.集合A={x|x2-2x>0},B={y|y=2x,x>0},R是实数集,则(∁RA)∪B等于(  )
A.[1,2]B.(1,+∞)C.(1,2]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2acos2x+bsinxcosx,f(0)=2,f($\frac{π}{3}$)=$\frac{{1+\sqrt{3}}}{2}$.
(1)求f(x)的最大值和最小值;
(2)求f(x)的单调递增区间
(3)对于角α,β,若有α-β≠kπ,k∈Z,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)的定义域为[0,8],则函数$\frac{f(2x)}{x-4}$的定义域为(  )
A.[0,4]B.[0,4)C.(0,4)D.[0,4)∪(4,16]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若3x=a,5x=b,则45x等于(  )
A.a2bB.ab2C.a2+bD.a2+b2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=sinx(cosx+1),则f′($\frac{π}{4}$)$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知tanα=3,α∈(0,π),则cos(${\frac{5π}{2}$+2α)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算数》是我国古代数学名著,在其中有道“竹九问题”“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容各多少?”意思为:今有竹九节,下三节容量和为4升,上四节容量之和为3升,且每一节容量变化均匀(即每节容量成等差数列),问每节容量各为多少?在这个问题中,中间一节的容量为(  )
A.$\frac{7}{2}$B.$\frac{37}{33}$C.$\frac{10}{11}$D.$\frac{67}{66}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求二项式(${\sqrt{x}$+$\frac{2}{x^2}}$)8的展开式中:求:
(1)二项式系数最大的项;
(2)系数最大的项.

查看答案和解析>>

同步练习册答案