精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=2acos2x+bsinxcosx,f(0)=2,f($\frac{π}{3}$)=$\frac{{1+\sqrt{3}}}{2}$.
(1)求f(x)的最大值和最小值;
(2)求f(x)的单调递增区间
(3)对于角α,β,若有α-β≠kπ,k∈Z,且f(α)=f(β),求tan(α+β)的值.

分析 (1)由f(0)=2,f($\frac{π}{3}$)=$\frac{{1+\sqrt{3}}}{2}$可得:a=1,b=2,于是可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,从而可求f(x)的最大值与最小值;
(2)由(1)得f(x)$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,即可求得其单调增区间;
(3)f(α)=f(β),可得2α+$\frac{π}{4}$=2kπ+(2β+$\frac{π}{4}$)或2α+$\frac{π}{4}$=2kπ+π-(2β+$\frac{π}{4}$),得到α+β的值,从而求得tan(α+β)的值.

解答 解:(Ⅰ)由f(0)=2,f($\frac{π}{3}$)=$\frac{{1+\sqrt{3}}}{2}$可得:a=1,b=2,
∴f(x)=2cos2x+2sinxcosx
=sin2x+cos2x+1
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
∴当x=$\frac{π}{8}$+kπ(k∈Z)时,f(x)取得最大值,为$\sqrt{2}$+1;
当x=$\frac{5π}{8}$+kπ(k∈Z)时,f(x)取得最小值,为-$\sqrt{2}$+1;
(Ⅱ)令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
则-$\frac{3π}{8}$+kπ≤x≤$\frac{π}{8}$+kπ,k∈Z,
∴f(x)的单调增区间为[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z.
(3)∵f(α)=f(β),∴sin(2α+$\frac{π}{4}$)=sin(2β+$\frac{π}{4}$).
∴2α+$\frac{π}{4}$=2kπ+(2β+$\frac{π}{4}$)或2α+$\frac{π}{4}$=2kπ+π-(2β+$\frac{π}{4}$),
∴α-β=kπ(舍去)或α+β=kπ+$\frac{π}{4}$,k∈Z,∴tan(α+β)=tan(kπ+$\frac{π}{4}$)=1,
即:tan(α+β)=1.

点评 本题考查三角函数的化简求值,考查正弦函数的单调性与最值,突出辅助角公式的应用,考查分析与应用能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.i3=(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.$\sqrt{3}+1$与$\sqrt{3}-1$,两数的等比中项是(  )
A.1B.-1C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若过原点O的直线与圆C:(x-2)2+y2=1相交于P、Q两点.
(1)求$\overrightarrow{CP}$•$\overrightarrow{CQ}$的取值范围;
(2)求△CPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=x4+ax3+bx2+cx+d,其中a、b、c、d为常数.如果f(1)=10,f(2)=20,f(3)=30,那么,$\frac{1}{4}$[f(4)+f(0)]的值是(  )
A.1B.4C.7D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=(${\frac{1}{2}}$)1-x,则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=($\frac{1}{2}$)x-3
其中所有正确命题的序号是①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow a$=(cosx+sinx,2sinx),$\overrightarrow b$=(cosx-sinx,cosx).令f(x)=$\overrightarrow a$•$\overrightarrow b$.
(I)求f(x)的最小正周期;
(II)求f(x)在[${\frac{π}{4}$,$\frac{3π}{4}}$]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知点F1,F2是椭圆C1:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的左、右焦点,点P是椭圆C2:$\frac{x^2}{2}$+y2=1上异于其长轴端点的任意动点,直线PF1,PF2与椭圆C1的交点分别是A,B和M,N,记直线AB,MN的斜率分别为k1,k2
(1)求证:k1•k2为定值;
(2)求|AB|•|MN|得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥S-ABCD中,底面ABCD为菱形,E、P、Q分别是棱AD、SC、AB的中点,且SE⊥平面ABCD.
(1)求证:PQ∥平面SAD;
(2)求证:平面SAC⊥平面SEQ.

查看答案和解析>>

同步练习册答案