精英家教网 > 高中数学 > 题目详情
19.非负实数a1,a2,…an,满足a1a2…an=1,对于n≥4,证明$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}+\frac{3n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$≥n+3.

分析 由a1a2…an=1得:当n≥2时,a1a2…an-1=1,两个式子相除求出an、$\frac{1}{{a}_{n}}$,代入不等式的左边化简即可证明结论成立.

解答 证明:由题意得,a1a2…an=1,①
所以当n≥2时,a1a2…an-1=1,②
$\frac{①}{②}$得an=1,则$\frac{1}{{a}_{n}}$=1,
所以$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}+\frac{3n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=n+$\frac{3n}{n}$=n+3,
所以$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}+\frac{3n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$≥n+3成立.

点评 本题考查数列的递推公式的化简、变形,以及数列与不等式的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.对函数x∈R,函数f(x)满足:f(x+1)=$\sqrt{f(x)-{f^2}(x)}+\frac{1}{2},{a_n}={f^2}$(n)-f(n),数列{an}的前15项和为
-$\frac{31}{16}$,则f(1000)的值为$\frac{2+\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+$\frac{a-1}{x}$+(1-2a)(a>0)
(1)当a≥$\frac{1}{2}$时,比较f(x)与㏑x在[1,+∞)上的大小关系;
(2)证明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>㏑(n+1)+$\frac{n}{{2({n+1})}}$(n≥1);
(3)已知S=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2014}$,求S的整数部分.(ln2014≈7.6079,ln2015≈7.6084)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,平面ADEF⊥平面ABCD,且四边形ADEF为正方形,AD⊥DC,AB∥CD,AB=AD=$\frac{1}{2}$DC=2,M为CE的中点.
(1)求证:BM∥平面ADEF;
(2)求证:BC⊥平面BED;
(3)求三棱锥M-DEB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.正四面体内镶在一个表面积为36π的球内,求这个四面体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设x=1是函数f(x)=(x2+ax+b)e1-x(x∈R)的一个极值点.
(1)求b的值.并用a表示函数f(x)的单凋区间;
(2)设a>0,求函数f(x)在区间[0,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面ABCD是平行四边形,M、N分别是AB、PC的中点,且MN⊥PC,MN⊥AB.证明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C是由所有满足方程$\sqrt{(x+m)^{2}+{y}^{2}}$=|$\frac{m}{3}$x+3|的点组成的,其中m是正常数.
(1)判断曲线C的形状,并说明理由;
(2)若直线y=$\frac{2}{3}$$\sqrt{2}$(x+m)交C于不同的两点P,Q,PQ中点的横坐标为-$\frac{1}{2}$,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别是边CD、CB的中点,AC交EF于点O,沿EF将△CEF翻折到△PEF,连接PA、PB、PD,得到五棱锥P-ABFED,且PB=$\sqrt{10}$.

(1)求证:BD⊥平面POA;
(2)求四棱锥P-BDEF的体积;
(3)求二面角B-AP-O的正切值.

查看答案和解析>>

同步练习册答案