分析 根据正弦定理求出角C的大小,利用辅助角公式即可得到结论.
解答 解:∵csinA=$\sqrt{3}$acosC,
∴由正弦定理可得sinCsinA=$\sqrt{3}$sinAcosC,
∴tanC=$\sqrt{3}$,
即C=$\frac{π}{3}$,则A+B=$\frac{2π}{3}$,
∴B=$\frac{2π}{3}$-A,0<A<$\frac{2π}{3}$,
∴sinA+sinB=sinA+sin($\frac{2π}{3}$-A)=sinA+$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA=$\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA=$\sqrt{3}$sin(A+$\frac{π}{6}$),
∵0<A<$\frac{2π}{3}$,
∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,
∴当A+$\frac{π}{6}$=$\frac{π}{2}$时,sinA+sinB取得最大值$\sqrt{3}$,
故答案为:$\sqrt{3}$.
点评 本题主要考查三角函数的化简和求值,利用正弦定理求出C的大小是解决本题的关键,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 增函数 | B. | 减函数 | C. | 先增后减函数 | D. | 先减后增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1≤x<2} | B. | {x|1<x<2} | C. | {x|0<x<4} | D. | {x|0≤x≤4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{15}$ | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$或$\sqrt{5}$ | D. | $\sqrt{15}$或$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -cos1 | B. | cos 1 | C. | $\sqrt{3}$cos 1 | D. | $-\sqrt{3}cos1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 8 | 9 | 6 | 4 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com