精英家教网 > 高中数学 > 题目详情
9.已知△ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinA=$\sqrt{3}$acosC,则sinA+sinB的最大值是$\sqrt{3}$.

分析 根据正弦定理求出角C的大小,利用辅助角公式即可得到结论.

解答 解:∵csinA=$\sqrt{3}$acosC,
∴由正弦定理可得sinCsinA=$\sqrt{3}$sinAcosC,
∴tanC=$\sqrt{3}$,
即C=$\frac{π}{3}$,则A+B=$\frac{2π}{3}$,
∴B=$\frac{2π}{3}$-A,0<A<$\frac{2π}{3}$,
∴sinA+sinB=sinA+sin($\frac{2π}{3}$-A)=sinA+$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA=$\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA=$\sqrt{3}$sin(A+$\frac{π}{6}$),
∵0<A<$\frac{2π}{3}$,
∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,
∴当A+$\frac{π}{6}$=$\frac{π}{2}$时,sinA+sinB取得最大值$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题主要考查三角函数的化简和求值,利用正弦定理求出C的大小是解决本题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某所高中为了调查本校高一年级学生一周内课外阅读的投入时间(单位:小时)的情况,学校教务处对该校高一1500名在校生进行了随机编号,从0001号到1500号,抽取编号最后一位数字为3的150名学生进行问卷调查,搜集得到了这150名学生一周课外阅读时间的数据,将数据分成8个组,分组区间为:[1,3),[3,5),[5,7),…,[13,15),[15,17],其频率分布直方图如图:
(Ⅰ)该校问卷调查环节抽取样本过程中,运用了哪种抽样方法;
(Ⅱ)求频率分布直方图中a的值;并求落在区间[9,11)中的学生人数b;
(Ⅲ)根据频率分布直方图,估计本校高一年级学生周课外阅读时间的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(B题)设函数f(x)=$\frac{1-sinx}{x}$,x$∈(0,\frac{π}{2})$,则f(x)的单调性是(  )
A.增函数B.减函数C.先增后减函数D.先减后增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合P={x|y=lg(2-x)},Q={x|x2-5x+4≤0},则P∩Q=(  )
A.{x|1≤x<2}B.{x|1<x<2}C.{x|0<x<4}D.{x|0≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中,a=$\sqrt{5}$,b=$\sqrt{15}$,∠A=30°,则c=(  )
A.$\sqrt{15}$B.$\sqrt{5}$C.2$\sqrt{5}$或$\sqrt{5}$D.$\sqrt{15}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.化简$\sqrt{2+cos2-si{n^2}1}$的结果是(  )
A.-cos1B.cos 1C.$\sqrt{3}$cos 1D.$-\sqrt{3}cos1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某市为缓解春运期间的交通压力,计划在某路段实施“交通限行”,为了解公众对该路段“交通限行”的态度,某机构从经过该路段的人员随机抽查了50人进行调查,将调查情况进行整理,制成下表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频数510151055
赞成人数489643
(1)完成被调查人员的频率分布直方图;
(2)若从年龄在[65,75]的被调查者中随机选取2人进行进一步的采访,求选中的2人中恰好有1人赞成该路段“交通限行”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.箱子里有3双不同的手套,随机拿出2只,记事件A表示“拿出的手套配不成对”;事件B表示“拿出的都是同一只手上的手套”;事件C表示“拿出的手套一只是左手的,一只是右手的,但配不成对”.
(1)请罗列出所有的基本事件;       
(2)分别求事件A、事件B、事件C的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.化简:sin3α±cos3α=(sinα+cosα)(1-$\frac{1}{2}$sin2α)和(sinα-cosα)(1+$\frac{1}{2}$sin2α).

查看答案和解析>>

同步练习册答案