精英家教网 > 高中数学 > 题目详情

【题目】某校在学年期末举行“我最喜欢的文化课”评选活动,投票规则是一人一票,高一(1)班44名学生和高一(7)班45名学生的投票结果如下表(无废票):

语文

数学

外语

物理

化学

生物

政治

历史

地理

高一(1)班

6

9

7

5

4

5

3

3

2

高一(7)班

6

4

5

6

5

2

3

该校把上表的数据作为样本,把两个班同一学科的得票之和定义为该年级该学科的“好感指数”.

(Ⅰ)如果数学学科的“好感指数”比高一年级其他文化课都高,求的所有取值;

(Ⅱ)从高一(1)班投票给政治、历史、地理的学生中任意选取位同学,设随机变量为投票给地理学科的人数,求的分布列和期望;

(Ⅲ)当为何值时,高一年级的语文、数学、外语三科的“好感指数”的方差最小?(结论不要求证明)

【答案】(Ⅰ)7,8;(Ⅱ)详见解析;(Ⅲ)..

【解析】

(Ⅰ)数学学科的“好感指数”比语文、外语的高即可;(Ⅱ)随机变量服从超几何分布;(Ⅲ)根据方差公式.

解:(Ⅰ)由已知 ,所以.

依题意,

解得 ,又

所以 .

(Ⅱ)由已知,随机变量是高一(1)班同学中投票给地理学科的人数,

所以.

.

.

(Ⅲ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求的图象在处的切线方程;

(Ⅱ)若函数有两个不同零点 ,且,求证: ,其中的导函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面侧面为棱的中点,在棱上,.

(1)求证:的中点;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种汽车的元件,该元件是经过三道工序加工而成的,三道工序加工的元件合格率分别为.已知每道工序的加工都相互独立,三道工序加工都合格的元件为一等品;恰有两道工序加工合格的元件为二等品;其它的为废品,不进入市场.

(Ⅰ)生产一个元件,求该元件为二等品的概率;

(Ⅱ)若从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①动点M到二定点AB的距离之比为常数则动点M的轨迹是圆

②椭圆的离心率为,则

③双曲线的焦点到渐近线的距离是

④已知抛物线上两点(是坐标原点),则

以上命题正确的是( )

A.②③④B.①④

C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假:

1)一次函数是非零常数)的图象一定经过点

2)直角三角形的外心一定在斜边上;

3)已知,则的充要条件;

4)如果都能被5整除,则也能被5整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 直线与抛物线交于两点, 线段的垂直平分线与直线交于点.

(1)求点的坐标;

(2)当P为抛物线上位于线段下方(含)的动点时, 求ΔOPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案