精英家教网 > 高中数学 > 题目详情
2.在长方体ABCD-A1B1C1D1中,与直线A1B是异面直线的是(  )
A.直线AB1B.直线CD1C.直线B1CD.直线BC1

分析 根据异面直线的定义结合长方体的性质,可得A1B与B1C的位置关系是异面.

解答 解:∵长方体ABCD-A1B1C1D1中,D1C∥A1B
∴A1B∥平面DCC1D1
而D1C1与B1C是相交直线,
∴A1B与B1C的位置关系是异面.
故选:C.

点评 本题考查异面直线的判定,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.某班共有有54名学生,现根据其学号(1-54),采用系统抽样抽取容量为6的一个样本,已知在第一部分抽取的是5号,那么样本中的最大学号是50.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C:(x-2)2+y2=1,若直线y=k(x+1)上存在点P,使得过P向圆C所作两条切线所成角为$\frac{π}{3}$,则实数k的取值范围为$[{-\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{5}}}{5}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某企业上半年产品产量与单位成本资料如表:
月份产量(千件)单位成本(元)
1273
2372
3471
4373
5469
6568
且已知产量x与成本y具有线性相关关系(a,b用小数表示,结果精确到0.01).
(1)求出y关于x的线性回归方程(给出数据$\sum_{i=1}^{n}$xiyi=1481);
(2)指出产量每增加1000件时,单位成本平均变动多少?
(3)假定产量为6000件时,单位成本为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax-$\frac{3}{2}$x2(x∈R),数列{an}的前n项和为Sn
(1)当a=2时,an+1=f(an),n∈N*,且S2=$\frac{9}{8}$,求a1、a2
(2)当a=1时,数列{bn}满足bn+1=f(bn),0<b1<$\frac{1}{2}$,证明bn<$\frac{1}{n+1}$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知 函数f(x)的定义域为R,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x<0时,f(x)>0.
(1)求证:f(x)是奇函数;
(2)判断f(x)在R上的单调性,并加以证明;
(3)解关于x的不等式f(x2)+3f(a)>3f(x)+f(ax),其中常数a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果甲、乙在围棋比赛中,甲不输的概率为60%,甲获胜的概率为50%,则甲、乙和棋的概率为(  )
A.50%B.40%C.20%D.10%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC在平面α内,△A′B′C′在平面β内,AB∥A′B′,BC∥B′C′,AC∥A′C′.求证:△ABC∽△A′B′C′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足$\frac{3}{{a}_{n+1}}$=$\frac{3}{{a}_{n}}$+1,a1=3
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)设bn=anan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案