精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x|x2-a|,a∈R.
(Ⅰ)当a≤0时,求证函数f(x)在(-∞,+∞)上是增函数;
(Ⅱ)当a=3时,求函数f(x)在区间[0,b]上的最大值.
【答案】分析:(1)利用导函数判断函数的单调性.
(2)函数取最值的可能点为极值点,端点,间断点,因此找出这些点,再比较函数值即可.
解答:(Ⅰ)解:∵a≤0,∴x2-a≥0,∴f(x)=x(x2-a)=x3-ax,
∴f(x)=3x2-a,
∵f(x)≥0对x∈R成立,
∴函数f(x)在(-∞,+∞)上是增函数.
(Ⅱ)解:当a=3时,f(x)=x|x2-3|=
(i)当x<-,或x>时,f(x)=3x2-3=3(x-1)(x+1)>0.
(ii)当-<x<时,f(x)=3-3x2=-3(x-1)(x+1).
当-1<x<1时,f(x)>0;
当-<x<-1,或1<x<时,f¢(x)<0.
所以f(x)的单调递增区间是(-∞,-],[-1,1],[,+∞);
f(x)的单调递减区间是[-,-1],[1,].(8分)
由区间的定义可知,b>0.
①若0<b≤1时,则[0,b]Ì[-1,1],因此函数f(x)在[0,b]上是增函数,
∴当x=b时,f(x)有最大值f(b)=3b-b3
②若1<b≤时,f(x)=3x-x3在[0,1]上单调递增,在[1,b]上单调递减,因此,在x=1时取到极大值f(1)=2,并且该极大值就是函数f(x)在区间[0,b]上的最大值.
∴当x=1时,f(x)有最大值2.
③若b>时,当x∈[0,]时,f(x)=3x-x3在[0,1]上单调递增,在[1,]上单调递减,
因此,在x=1时取到极大值f(1)=2,在x∈[,b]时,f(x)=x3-3x在[,b]上单调递增,
在x=b时,f(x)有最大值f(b)=b3-3b.
(i)当f(1)≥f(b),即2≥b3-3b,b3-b-2b-2≤0,b(b2-1)-2(b+1)≤0,(b+1)2(b-2)≤0,b≤2.
∴当<b≤2时,在x=1时,f(x)取到最大值f(1)=2.
(ii)当f(1)<f(b),解得b>2,
∴当b>2时,f(x)在x=b时,取到最大值f(b)=b3-3b,
综上所述,函数y=f(x)在区间[0,b]上的最大值为ymax=
点评:本题主要考查了函数的单调性以及函数的最值问题,注意分情况讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案