4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬PµãµÄ¼«×ø±êΪ£¨2£¬¦Ð£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=sin¦È£®
£¨¢ñ£©ÊÔ½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢ÇóÇúÏßCµÄ½¹µã×ø±ê£»
£¨¢ò£©ÉèÖ±ÏßlÓëÇúÏßCÏཻÓÚÁ½µãA£¬B£¬µãMΪABµÄÖе㣬Çó|PM|µÄÖµ£®

·ÖÎö £¨¢ñ£©°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈëÇúÏßCµÄ·½³Ì¦Ñcos2¦È=sin¦È£¬¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÉèµãA£¬B£¬M¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬t0 £¬ÓÉÌâÒâ¿ÉÖª${t_0}=\frac{{{t_1}+{t_2}}}{2}$£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÅ×ÎïÏßµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÇóµÃt1+t2µÄÖµ£¬¿ÉµÃ|PM|=|t0|µÄÖµ£®

½â´ð ½â£º£¨¢ñ£©°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈë¦Ñcos2¦È=sin¦È£¬¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2=y£¬
ËüÊÇ¿ª¿ÚÏòÉϵÄÅ×ÎïÏߣ¬½¹µã×ø±êΪ$£¨{0£¬\frac{1}{4}}£©$£®
£¨¢ò£©µãPµÄÖ±½Ç×ø±êΪ£¨-2£¬0£©£¬ËüÔÚÖ±ÏßlÉÏ£¬ÔÚÖ±ÏßlµÄ²ÎÊý·½³ÌÖУ¬
ÉèµãA£¬B£¬M¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬t0 £¬ÓÉÌâÒâ¿ÉÖª${t_0}=\frac{{{t_1}+{t_2}}}{2}$£®
°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÅ×ÎïÏßµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ${t^2}-5\sqrt{2}t+8=0$£®
ÒòΪ$¡÷=£¨5\sqrt{2}{£©^2}-4¡Á8=18£¾0$£¬
ËùÒÔ${t_1}+{t_2}=5\sqrt{2}£¬\;\;\;\;\;Ôò|{PM}|=|{t_0}|=\frac{{5\sqrt{2}}}{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é²ÎÊý·½³ÌºÍ¼«×ø±êµÄÓ¦Ó㬲ÎÊýµÄ¼¸ºÎÒâÒ壬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¸ø³öÏÂÁÐÐðÊö£º
¢ÙÈô¹ýµãA£¨m-1£¬2£©ºÍµãB£¨1£¬2m+1£©µÄÖ±ÏßµÄÇãб½ÇΪ$\frac{3¦Ð}{4}$£¬Ôòm=-1£»
¢ÚÔÚ¡÷ABCÖУ¬Èôcos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$£¬$\overrightarrow{AB}•\overrightarrow{AC}=3$£¬Ôò¡÷ABCµÄÃæ»ýΪ4£»
¢ÛÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬Ç°nÏîºÍΪSn£¬ÔòS4£¬S8-S4£¬S12-S8Ò²³ÉµÈ±ÈÊýÁУ»
¢ÜÈôº¯Êýf£¨x£©=cosx+$\frac{1}{cosx+2}$£¨x¡ÊR£©£¬Ôòf£¨x£©µÄ×îСֵΪ0£®
ÆäÖÐËùÓÐÕýÈ·ÐðÊöµÄÐòºÅÊǢ٢ۢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2-3x+2£¾0µÄ½â¼¯Îª{x|x£¼1£¬»òx£¾b}£¬ÔòʵÊýbµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=mx3-3x2+n-2£¨m¡Ù0£©£®
£¨1£©Èôf£¨x£©ÔÚx=1´¦È¡µÃ¼«Ð¡Öµ1£¬ÇóʵÊým£¬nµÄÖµ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Çóº¯Êýf£¨x£©ÔÚx¡Ê[-1£¬2]µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚµ×ÃæÎªÕý·½ÐεÄËÄÀâ×¶S-ABCDÖУ¬SA=SB=SC=SD£¬ÒìÃæÖ±ÏßADÓëSCËù³ÉµÄ½ÇΪ60¡ã£¬AB=2£¬ÔòËÄÀâ×¶S-ABCDµÄÍâ½ÓÇòµÄ±íÃæ»ýΪ8¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔ²x2+y2-2x-4y+m=0£®
£¨1£©´Ë·½³Ì±íʾԲ£¬ÇómµÄȡֵ·¶Î§£»
£¨2£©Èô£¨1£©ÖеÄÔ²ÓëÖ±Ïßx+2y-4=0ÏཻÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µã£¬ÇóÒÔMNΪֱ¾¶µÄÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÅ×ÎïÏßGµÄ¶¥µãÔÚÔ­µã£¬½¹µãÔÚyÖáµÄÕý°ëÖáÉÏ£¬Å×ÎïÏßÉϵĵãP£¨m£¬4£©µ½½¹µãµÄ¾àÀëµÈÓÚ5
£¨¢ñ£©ÇóÅ×ÎïÏßGµÄ·½³Ì£»
£¨2£©ÈôÕý·½ÐÎABCDµÄÈý¸ö¶¥µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¨x1£¼0¡Üx2£¼x3£©ÔÚÅ×ÎïÏßÉÏ£¬¿ÉÉèÖ±ÏßBCµÄбÂÊk£¬ÇóÕý·½ÐÎABCDÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýy=f£¨x£©ÔÚRÉϵĵ¼º¯Êýf¡ä£¨x£©£¬?x¡ÊR¶¼ÓÐf¡ä£¨x£©£¼x£¬Èôf£¨4-m£©-f£¨m£©¡Ý8-4m£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[-2£¬2]B£®[2£¬+¡Þ£©C£®[0£¬+¡Þ£©D£®£¨-¡Þ£¬-2]¡È[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÏÂÁÐÃüÌâÖУ¬
¢Ù¡°Èôa+b¡Ý2£¬Ôòa£¬bÖÐÖÁÉÙÓÐÒ»¸ö²»Ð¡ÓÚ1¡±µÄÄæÃüÌâ
¢ÚÈôÃüÌâ¡°·ÇP¡±ÓëÃüÌâ¡°P»òQ¡±¶¼ÊÇÕæÃüÌ⣬ÔòÃüÌâQÎªÕæÃüÌâ
¢Û¡°ËùÓÐÆæÊý¶¼ÊÇËØÊý¡±µÄ·ñ¶¨ÊÇ¡°ÖÁÉÙÓÐÒ»¸öÆæÊý²»ÊÇËØÊý¡±
¢Ü¡°sin¦È=$\frac{1}{2}$¡±ÊÇ¡°¦È=30¡ã¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ
ÊÇÕæÃüÌâµÄÊÇ¢Ú¢Û£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸