精英家教网 > 高中数学 > 题目详情
14.下列命题中,
①“若a+b≥2,则a,b中至少有一个不小于1”的逆命题
②若命题“非P”与命题“P或Q”都是真命题,则命题Q为真命题
③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”
④“sinθ=$\frac{1}{2}$”是“θ=30°”的充分不必要条件
是真命题的是②③.

分析 ①,写出命题“若a+b≥2则a,b中至少有一个不小于1”的逆命题,可举例判断①;
②,利用复合命题的真假判断;
③,写出“所有奇数都是素数”的否定,再举例说明,可判断③;
④,由已知sinθ=$\frac{1}{2}$:,根据正弦函数的周期性,可得θ的值,然后再判断他们的关系.

解答 解:对于①,“若a+b≥2,则a,b中至少有一个不小于1”的逆命题为“若a,b中至少有一个不小于1,则a+b≥2”,错误,如a=3≥1,b=-2,但a+b=1<2
对应②因为“?p”是真命题,所以p是假命题.若“p或q”为真命题,则q必为真命题.所以②正确.
对于③,“所有奇数都是素数”的否定是“至少有一个奇数不是素数”,如:9是奇数,但不是素数,故③正确;
对于④,sinθ=$\frac{1}{2}$,则θ=30°+k•360°,k∈Z;而θ=30°,能得出sinθ=$\frac{1}{2}$,故“sinθ=$\frac{1}{2}$”是“θ=30°”必要不充分条件,故④不正确.
故答案为②③.

点评 本题主要考查命题的真假判断,涉及的知识点较多,综合性较强

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),P点的极坐标为(2,π),曲线C的极坐标方程为ρcos2θ=sinθ.
(Ⅰ)试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点坐标;
(Ⅱ)设直线l与曲线C相交于两点A,B,点M为AB的中点,求|PM|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.经过点A(1,0)的动直线交抛物线y2=8x于M、N两点,求动弦MN中点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知抛物线y2=4x与经过该抛物线焦点的直线l在第一象限的交点为A,A在y轴和准线上的投影分别为点B,C,$\frac{AB}{BC}$=2,则直线l的斜率为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex,其中e=2.71828…为自然对数的底数.
(1)设函数g(x)=(x2+ax-2a-3)f(x),a∈R.试讨论函数g(x)的单调性;
(2)设函数h(x)=f(x)-mx2-x,m∈R,若对任意${x_1},{x_2}∈[{\frac{1}{2},2}]$,且x1>x2都有x2h(x1)-x1h(x2)>x1x2(x2-x1)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算(-8-7i)×(-3i)=-21+24i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知:cos(α+$\frac{π}{4}}$)=$\frac{3}{5}$,$\frac{π}{2}$<α<$\frac{3π}{2}$,求cos(2α+$\frac{π}{4}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.两个相同的正四棱锥底面重合组成一个八面体,可放于棱长为1的正方体中,重合的底面与正方体的某一个图平行,各顶点均在正方体的表面上(如图),该八面体的体积可能值有(  )
A.1个B.2个C.3个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于A,B两点,一条垂直于x轴的直线分别与线段AB和直线l:y=-c交于点P,Q.
(1)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,求c的值;
(2)若P为线段AB的中点,求证:直线QA与该抛物线有且仅有一个公共点.
(3)若直线QA的斜率存在,且与该抛物线有且仅有一个公共点,试问P是否一定为线段AB的中点?说明理由.

查看答案和解析>>

同步练习册答案