设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….
(1)求a1,a2;
(2)猜想数列{Sn}的通项公式,并给出严格的证明.
分析:(1)验证当n=1时,x2-a1x-a1=0有一根为a1根据根的定义,可求得a1,同理,当n=2时,也可求得a2;
(2)用数学归纳法证明数列问题时分为两个步骤,第一步,先证明当当n=1时,已知结论成立,第二步,先假设n=k时结论成立,利用此假设结合题设条件证明当n=k+1时,结论也成立即可.
解答:解:(1)当n=1时,x
2-a
1x-a
1=0有一根为S
1-1=a
1-1,
于是(a
1-1)
2-a
1(a
1-1)-a
1=0,解得a
1=
.
当n=2时,x
2-a
2x-a
2=0有一根为S
2-1=a
2-
,
于是(a
2-
)
2-a
2(a
2-
)-a
2=0,
解得a
2=
.
(2)由题设(S
n-1)
2-a
n(S
n-1)-a
n=0,
S
n2-2S
n+1-a
nS
n=0.
当n≥2时,a
n=S
n-S
n-1,
代入上式得S
n-1S
n-2S
n+1=0.①
由(1)得S
1=a
1=
,S
2=a
1+a
2=
+
=
.
由①可得S
3=
.由此猜想S
n=
,n=1,2,3,.
下面用数学归纳法证明这个结论.
(i)n=1时已知结论成立.
(ii)假设n=k时结论成立,即S
k=
,当n=k+1时,由①得S
k+1=
,即S
k+1=
,故n=k+1时结论也成立.
综上,由(i)、(ii)可知S
n=
对所有正整数n都成立.
点评:本题主要考查数学归纳法,数学归纳法的基本形式:
设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基)
2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立