精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x|x2-3|,x∈[0,m]其中m∈R,且m>0.
(1)若m<1,求证:函数f(x)是增函数.
(2)如果函数f(x)的值域是[0,2],试求m的取值范围.
(3)若m≥1,试求函数f(x)的值域.
证明:(1)当m<1时,f(x)=x(3-x2)=3x-x3
因为f′(x)=3-3x2=3(1-x2)>0.
所以f(x)是增函数.
(2)令g(x)=x|x2-3|,x≥0.
则g(x)=
3x-x3,0≤x≤
3
x3-3x,x>
3

0<x<
3
时,由g′(x)=3-3x2=0得x=1,
所以g(x)在[0,1]上是增函数,在[1,
3
]上是减函数.
x>
3
时,g′(x)=3x2-3>0,所以g(x)在[
3
,+∞)上是增函数.
所以当x∈[0,
3
]
时,函数g(x)的最大值是g(1)=2,最小值是g(0)=g(
3
)=0.
从而0<m<1不符合题意,1≤m≤
3
符合题意.
当m
3
时,在x∈[0,
3
)
时,f(x)∈[0,2];
x∈[
3
,m]
时,f(x)∈[0,f(m)].
这时f(x)的值域是[0,2]的充要条件是f(m)≤2,
即m3-3m≤2,(m-2)(m+1)2≤0,解得
3
<m≤2

综上所述,m的取值范围是[1,2].
(3)由(2)知,当1≤m≤2时,f(x)在[0,m]上的最大值为f(1)=2,最小值为f(0)=0,
∴f(x)在[0,m]上的值域为[0,2].
当m>2时,f(x)在[
3
,m]上单调递增,
f(x)max=f(m)=m3-3m
∴f(x)在[0,m]的值域为[0,m3-3m].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案