【题目】设等比数列
的前n项和为Sn,已知a1=2,且4S1,3S2,2S3成等差数列.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,求数列{bn}的前n项和Tn.
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】
试题分析:(Ⅰ)根据4S1,3S2,2S3成等差数列.根据等差中项6S2=4S1+2S3,化简整理求得q=2,写出通项公式;(Ⅱ)讨论当n=1、2时,求得T1=6,T2=10,写出前n项和,采用错位相减法求得Tn
试题解析:(Ⅰ)∵4S1,3S2,2S3成等差数列,
∴6S2=4S1+2S3, 即6(a1+a2)=4a1+2(a1+a2+a3),
则:a3=2a2,q=2, ∴
;.................................5分
(Ⅱ)当n=1,2时,T1=6,T2=10,
当n≥3,Tn=10+1×23+3×24+…+(2n﹣5)2n,
2Tn=20+1×24+3×25+…+(2n﹣7)×2n+(2n﹣5)×2n+1,
两式相减得:﹣Tn=﹣10+8+2(24+25+…+2n)﹣(2n﹣5)×2n+1,..........9分
=﹣2+2×
﹣(2n﹣5)×2n+1,
=﹣34+(7﹣2n)2n+1,
∴Tn=34﹣(7﹣2n)2n+1.
∴
...........12分
科目:高中数学 来源: 题型:
【题目】已知函数
的图象上有一点列
,点
在
轴上的射影是
,且
(
且
),
.
(1)求证:
是等比数列,并求出数列
的通项公式;
(2)对任意的正整数
,当
时,不等式
恒成立,求实数
的取值范围.
(3)设四边形
的面积是
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有学生
人,其中一年级
人,二、三年级各
人,现要用抽样方法抽取
人形成样本,将学生按一、二、三年级依次统一编号为
,
,
,
,如果抽得号码有下列四种情况:
①
,
,
,
,
,
,
,
,
,
;
②
,
,
,
,
,
,
,
,
,
;
③
,
,
,
,
,
,
,
,
,
;
④
,
,
,
,
,
,
,
,
,
;
其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为 ![]()
A. ①② B. ②③ C. ①③ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据下列算法语句,将输出的A值依次记为a1,a2,…,an,…,a2015;已知函数f(x)=a2sin(ωx+φ)(ω>0,|φ|<
)的最小正周期是a1,且函数
的图象关于直线x=
对称。
![]()
(Ⅰ)求函数
表达式;
(Ⅱ)已知△ABC中三边a,b,c对应角A,B,C,a=4,b=4
,∠A=30°,求
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
①列出所有可能的抽取结果;
②求抽取的2所学校均为小学的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com