精英家教网 > 高中数学 > 题目详情
8.数列{an}前n项和为Sn,若a1=2,an=2an-1-1(n≥2,n∈N*),则S10=(  )
A.513B.1023C.1026D.1033

分析 由已知推导出{an-1}是首项为1,公比为2的等比数列,由此利用分组求和法能求出S10

解答 解:∵数列{an}前n项和为Sn,a1=2,an=2an-1-1(n≥2,n∈N*),
∴an-1=2(an-1-1),
又a1-1=2-1=1,
∴{an-1}是首项为1,公比为2的等比数列,
∴${a}_{n}-1={2}^{n-1}$,
∴an=2n-1+1,
∴S10=20+2+22+…+29+1×10
=$\frac{1×(1-{2}^{10})}{1-2}+10$
=1033.
故选:D.

点评 本题考查数列的前10项和的求法,是中档题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若数列{an}的前n项和为Sn,满足a1=1,Sn=an+1+n,则其通项公式为${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{1-{2}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程2x+x=0的根所在的区间是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}的公比为正数,且a4•a8=2a52,a2=1,则a1=(  )
A.$\frac{1}{2}$B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式x2-x-2>0的解集是(  )
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-∞-2)∪(1,+∞)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3..已知二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0的两根积为3,f(x)的图象过(0,3),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“?x∈R,x<sin x或x>tan x”的否定为(  )
A.?x∈R,x<sinx且x>tanxB.?x∈R,x≥sinx或x≤tanx
C.?x∈R,x<sinx或x>tanxD.?x∈R,x≥sinx且x≤tanx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)为奇函数,且f(x)在(-∞,0)内是增函数,f(-2)=0,则xf(x)>0的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,
(1)求m,n的取值.
(2)比较甲、乙两组数据的稳定性,并说明理由.
注:方差公式s2=$\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}+\overline{x})^{2}}{n}$.

查看答案和解析>>

同步练习册答案