精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-2
2x
+2(x≥2)
(Ⅰ)求反函数;
(Ⅱ)若数列{an}(an>0)的前n项和Sn=f-1(Sn-1),(x≥2),且a1=2求数列{an}的通项公式;
(Ⅲ) 令bn=
an+1 -an 
2anan+1
(n∈N),求
lim
n→∞
(b1+b2+…+bn-n)
分析:(1)根据反函数定义,用y表示x,同时注意反函数的定义域.
(Ⅱ)通过已知条件变形,直接根据等差数列定义判断得知求解.
(Ⅲ)由第Ⅱ知,将bn由n的关系式表示,然后用累加法可解.
解答:解:(Ⅰ)令y=f(x),∵f(x)=x-2
2x
+2,
∴y=(
x
-
2
)
2
,(y≥0),即f-1(x)=(
x
-
2
2
(x≥0)
(Ⅱ)∵Sn=f-1(Sn-1),(x≥2),
∴Sn=(
Sn-1
-
2
)
2
Sn
-
Sn-1
=
2

∴{
Sn
}是首项为
2
、公差为
2
的等差数列,
Sn
=
2
n,即Sn=2n2,∴数列{an}也是等差数列,此时可得数列{an}的
  通项公式为an=4n-2(n∈N)
(Ⅲ)由(Ⅱ)知,bn=
an+1 -an 
2anan+1
=
1
2
(
1
an
-
1
an+1
)
=
1
2
(
1
4n-2
-
1
4n+2
)
=
1
8
(
1
2n-1
-
1
2n+1
)

lim
n→∞
(b1+b2+…+bn-n)
=
lim
n→∞
1
8
(1-
1
2n+1
)=
1
8
点评:此题考查反函数的定义,等差数列定义及数列求和常用的方法--叠加法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案