精英家教网 > 高中数学 > 题目详情
1.平面α的斜线与α所成的角为30°,那此斜线和α内所有不过斜足的直线中所成的角的最大值为90°.

分析 斜线和α内所有不过斜足的直线为异面直线,由此能求出此斜线和α内所有不过斜足的直线中所成的角的最大角.

解答 解:∵斜线和α内所有不过斜足的直线为异面直线,
∴此斜线和α内所有不过斜足的直线中所成的角的最大角为90°.
故答案为:90°.

点评 本题考查异面直线所成角的求法,考查线面角、线面垂直等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.甲、乙、丙.丁四辆玩具赛车同时从起点出发并做匀速直线运动,丙车最先到达终点.丁车最后到达终点.若甲、乙两车的s-t图象如图所示,则对于丙、丁两车的图象所在区域,判断正确的是(  )
A.丙在Ⅲ区域,丁在Ⅰ区域B.丙在Ⅰ区城,丁在Ⅲ区域
C.丙在Ⅱ区域,丁在Ⅰ区域D.丙在Ⅲ区域,丁在Ⅱ区域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$sin 2xsin φ+cos2xcos φ-$\frac{1}{2}$sin($\frac{π}{2}$+φ)(0<φ<π),其图象过点($\frac{π}{6}$,$\frac{1}{2}$).
(1)求φ的值;
(2)求函数f(x)的单调增区间;
(3)将函数y=f(x)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-2x-1,x≤0}\end{array}\right.$,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x2+y2+2x+2y在D上的最小值为-$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2-(a+2)x+lnx,其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)的点(1,f(1))处的切线方程;
(Ⅱ)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图为某几何体的三视图,则其体积为(  )
A.$\frac{14π}{6}+12$B.$\frac{11π}{3}+4$C.$\frac{11π}{6}+12$D.$\frac{11π}{3}+12$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,是一个几何体的正视图、侧视图、俯视图,且正视图、侧视图都是矩形,俯视图是平行四边形,则该几何体的体积是(  )
A.$\frac{8\sqrt{15}}{3}$B.8$\sqrt{15}$C.$\frac{4\sqrt{15}}{3}$D.4$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某乳业公司生产甲、乙两种产品,需要A、B、C三种苜蓿草饲料,生产1个单位甲种产品和生产1个单位乙种产品所需三种苜蓿草饲料的吨数如表所示:
产品苜蓿草饲料ABC
483
5510
现有A种饲料200吨,B种饲料360吨,C种饲料300吨,在此基础上生产甲乙两种产品,
已知生产1个单位甲产品,产生的利润为2万元,生产1个单位乙产品,产生的利润为3万元,分别用x、y表示生产甲、乙两种产品的数量;
(1)用x、y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲乙两种产品多少时,能够产出最大的利润?并求出此最大利润.

查看答案和解析>>

同步练习册答案