精英家教网 > 高中数学 > 题目详情
6.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{6}$

分析 由三视图知:该几何体是一个高h=1的三棱锥S-ABC,其中底面△ABC的底AB=1,高CD=1,由此能求出该几何体的体积.

解答 解:由三视图知:
该几何体是一个高h=1的三棱锥S-ABC,
其中底面△ABC的底AB=1,高CD=1,
∴该几何体的体积为V=$\frac{1}{3}×h×{S}_{△ABC}$=$\frac{1}{3}×1×\frac{1}{2}×1×1$=$\frac{1}{6}$.
故选:D.

点评 本题考查向何体的体积的求法,涉及到三视图、三棱锥等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知集合A=[-3,3],B=[-2,2],设M={(x,y)|x∈A,y∈B},在集合M内随机取出一个元素(x,y).
(1)求以(x,y)为坐标的点落在圆x2+y2=4内的概率;
(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于$\sqrt{2}$的概率.
(提示:可以考虑采用数形结合法)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调减区间;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位长度,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的函数,其导函数f'(x)满足f'(x)<f(x)(x∈R),则(  )
A.f(2)>e2f(0),f(2001)>e2001f(0)B.f(2)<e2f(0),f(2001)>e2001f(0)
C.f(2)>e2f(0),f(2001)<e2001f(0)D.f(2)<e2f(0),f(2001)<e2001f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.平面α的斜线与α所成的角为30°,那此斜线和α内所有不过斜足的直线中所成的角的最大值为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=-\frac{1}{3}{x}^{3}+x$在(t,10-t2)上有最大值,则实数t的取值范围为(  )
A.$(-3,-\sqrt{6})$B.$(-2,-\sqrt{3})$C.[-2,1)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一位手机用户前四次输入四位数字手机密码均不正确,第五次输入密码正确,手机解锁.事后发现前四次输入的密码中,每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字(  )
A.4,6B.3,6C.3,7D.1,7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”外接球的体积为$\frac{8\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是三角形ABC的直观图,△ABC平面图形是直角三角形(填正三角形、锐角三角形、钝角三角形、直角三角形或者等腰三角形)

查看答案和解析>>

同步练习册答案