精英家教网 > 高中数学 > 题目详情
13.把下列复数表示成三角形式:
-$\frac{1}{2}-\frac{\sqrt{3}}{2}$i.

分析 求出模及幅角,即可将复数的代数形式化为三角形式.

解答 解:-$\frac{1}{2}-\frac{\sqrt{3}}{2}$i=cos$\frac{4π}{3}$+isin$\frac{4π}{3}$

点评 本题考查复数的代数形式化为三角形式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2$\sqrt{3}sinxcosx+2{cos^2}$x(x∈R).
(Ⅰ)求函数f(x)的最小正周期及在区间$[{0,\frac{π}{2}}]$上的最大值和最小值;
(Ⅱ)将函数f(x)图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数g(x)图象,求g(x)的对称轴方程和对称中心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2x-$\sqrt{3}$cos2x-a.
(1)若f(x)在[0,$\frac{π}{3}$]上的最大值为3,求实数a的值;
(2)若f(x)在[$\frac{π}{4}$π]上只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(2,6)和圆x2+y2+2x-4y-4=0,解答下列问题:
(1)求圆心和半径;
(2)判断点P是否在圆上;
(3)求圆上的点到点P的最长距离和最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据下面各个数列{an}的首项和递推关系,求其通项公式.
(1)a1=1,an+1=an+2n(n∈N*);
(2)a1=1,an+1=+$\frac{n}{n+1}$an(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC是半径为5的圆O的内接三角形,且$tanA=\frac{4}{3}$,若$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}(x、y∈R)$,则x+y的最大值为(  )
A.$\frac{4}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.1D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组既要有教师,又要有学生,不同的安排方案共有28种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,则实数a的取值范围为(  )
A.(-∞,0]B.[-1,3]C.[3,5]D.[5,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输入x=30,则输出的结果为(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案