精英家教网 > 高中数学 > 题目详情
1.已知点P(2,6)和圆x2+y2+2x-4y-4=0,解答下列问题:
(1)求圆心和半径;
(2)判断点P是否在圆上;
(3)求圆上的点到点P的最长距离和最短距离.

分析 (1)圆x2+y2+2x-4y-4=0,化为标准方程,即可求圆心和半径;
(2)利用22+62+4-24-4>0,判断点P是否在圆上;
(3)求出PC,即可求圆上的点到点P的最长距离和最短距离.

解答 解:(1)圆x2+y2+2x-4y-4=0,化为标准方程为圆(x+1)2+(y-2)2=9,圆心C(-1,2),半径r=3;
(2)因为22+62+4-24-4>0,所以点P不在圆上,在圆外;
(3)PC=$\sqrt{(2+1)^{2}+(6-2)^{2}}$=5,
所以圆上的点到点P的最长距离为8,最短距离为2.

点评 本题考查圆的方程,考查点与圆的位置关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在各项均为正数的等比数列{an}中,已知a1a5=25,则a3等于(  )
A.5B.25C.-25D.-5或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0)和⊙M:(x-4)2+y2=r2(0<r≤1),圆心M到抛物线C的准线的距离为$\frac{17}{4}$,过抛物线C上一点H(x0,y0)(y0≥1)作两条直线分别与⊙M相切与A、B两点,与抛物线C交于E、F两点.
(1)求抛物线C的方程;
(2)当∠AHB的角平分线垂直x轴时,求直线EF的斜率;
(3)若r=1时,直线AB在y轴上的截距为t,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知二次函数y=ax2+bx-3的图象过坐标(-2,5),与x轴的两个交点分别为A,B(3,0).与y轴的负半轴交于点C.
(1)求二次函数的表达式;
(2)在该函数图象上能否找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn与an关系是Sn=2-($\frac{1}{2}$)n-1-an,n∈N*
(1)求证:数列{2nan}是等差数列;
(2)设Tn=S1+S2+…+Sn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出下列四个结论:
①若n组数据(x1,y1),…(xn,yn)的散点都在y=-2x+1上,则相关系数r=-1;
②由直线$x=\frac{1}{2},x=2$,曲线$y=\frac{1}{x}$及x轴围成的图形的面积是2ln2;
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④设回归直线方程为$\widehat{y}$=2-2.5x,当变量x增加一个单位时,$\widehat{y}$平均增加2个单位.
其中正确结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.把下列复数表示成三角形式:
-$\frac{1}{2}-\frac{\sqrt{3}}{2}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,A是两条平行直线之间的一定点,且点A到两条平行直线的距离分别为AM=1,AN=$\sqrt{3}$.设△ABC,AC⊥AB,且顶点B、C分别在两条平行直线上运动,则$\frac{1}{AB}$+$\frac{\sqrt{3}}{AC}$的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知单位向量$\overrightarrow i,\overrightarrow j,\overrightarrow k$两两的夹角均为θ(0<θ<π,且θ≠$\frac{π}{2}$),若空间向量$\overrightarrow a$满足$\overrightarrow a=x\overrightarrow i+y\overrightarrow j+z\overrightarrow k(x,y,z∈R)$,则有序实数组(x,y,z)称为向量$\overrightarrow a$在“仿射”坐标系O-xyz(O为坐标原点)下的“仿射”坐标,记作$\overrightarrow a={(x,y,z)_θ}$有下列命题:
①已知$\overrightarrow a={(1,3,-2)_θ},\overrightarrow b={(4,0,2)_θ}$,则$\overrightarrow a$•$\overrightarrow b$=0;
②已知$\overrightarrow a={(x,y,0)_{\frac{π}{3}}},\overrightarrow b={(0,0,z)_{_{\frac{π}{3}}}}$其中xyz≠0,则当且仅当x=y时,向量$\overrightarrow a$,$\overrightarrow b$的夹角取得最小值;
③已知$\overrightarrow a={({x_1},{y_1},{z_1})_θ},\overrightarrow b={({x_2},{y_2},{z_2})_θ},则\overrightarrow a+\overrightarrow b={({x_1}+{x_2},{y_1}+{y_2},{z_1}+{z_2})_θ}$;
④已知$\overrightarrow{OA}={(1,0,0)_{\frac{π}{3}}},\overrightarrow{OB}={(0,1,0)_{\frac{π}{3}}},\overrightarrow{OC}={(0,0,1)_{\frac{π}{3}}}$,则三棱锥O-ABC的表面积S=$\sqrt{2}$,其中真命题有②③(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案