精英家教网 > 高中数学 > 题目详情
11.已知单位向量$\overrightarrow i,\overrightarrow j,\overrightarrow k$两两的夹角均为θ(0<θ<π,且θ≠$\frac{π}{2}$),若空间向量$\overrightarrow a$满足$\overrightarrow a=x\overrightarrow i+y\overrightarrow j+z\overrightarrow k(x,y,z∈R)$,则有序实数组(x,y,z)称为向量$\overrightarrow a$在“仿射”坐标系O-xyz(O为坐标原点)下的“仿射”坐标,记作$\overrightarrow a={(x,y,z)_θ}$有下列命题:
①已知$\overrightarrow a={(1,3,-2)_θ},\overrightarrow b={(4,0,2)_θ}$,则$\overrightarrow a$•$\overrightarrow b$=0;
②已知$\overrightarrow a={(x,y,0)_{\frac{π}{3}}},\overrightarrow b={(0,0,z)_{_{\frac{π}{3}}}}$其中xyz≠0,则当且仅当x=y时,向量$\overrightarrow a$,$\overrightarrow b$的夹角取得最小值;
③已知$\overrightarrow a={({x_1},{y_1},{z_1})_θ},\overrightarrow b={({x_2},{y_2},{z_2})_θ},则\overrightarrow a+\overrightarrow b={({x_1}+{x_2},{y_1}+{y_2},{z_1}+{z_2})_θ}$;
④已知$\overrightarrow{OA}={(1,0,0)_{\frac{π}{3}}},\overrightarrow{OB}={(0,1,0)_{\frac{π}{3}}},\overrightarrow{OC}={(0,0,1)_{\frac{π}{3}}}$,则三棱锥O-ABC的表面积S=$\sqrt{2}$,其中真命题有②③(写出所有真命题的序号)

分析 理解仿射坐标的概念,利用空间向量的共线定理及数量积运算即可求解.

解答 解:①若$\overrightarrow{a}$=(2,0,-1)$\overrightarrow{o}$,$\overrightarrow{b}$=(1,0,2)$\overrightarrow{o}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(2$\overrightarrow{i}$-$\overrightarrow{k}$)•($\overrightarrow{i}$+2$\overrightarrow{k}$)=2+3$\overrightarrow{i}$•$\overrightarrow{k}$-2=3cosθ,
∵0<θ<π,且$θ≠\frac{π}{2}$,∴$\overrightarrow{a}$•$\overrightarrow{b}$≠0;
②$\overrightarrow{a}=(x,y,0)_{\frac{π}{3}}$,$\overrightarrow{b}=(0,0,z)_{\frac{π}{3}}$,其中xyz≠0,向量$\overrightarrow{a}$的夹角取得最小值,两向量同向
存在实数λ>0,满足$\overrightarrow{a}$=λ$\overrightarrow{b}$,根据仿射坐标的定义,易知②为正确;
③已知$\overrightarrow{a}$=(x1,y1,z1θ,$\overrightarrow{b}$=(x2,y2,z2θ,则$\overrightarrow{a}$=(x1-x2)$\overrightarrow{i}$+(y1-y2)$\overrightarrow{j}$+(z1-z2)$\overrightarrow{k}$,
$\overrightarrow{a}-\overrightarrow{b}=({x}_{1}-{x}_{2},{y}_{1}-{y}_{2},{z}_{1}{-z}_{2})_{θ}$
④$\overrightarrow{OA}=(1,0,0)_{\frac{π}{3}}$,$\overrightarrow{OB}=(0,1,0)_{\frac{π}{3}}$,$\overrightarrow{OC}=(0,0,1)_{\frac{π}{3}}$已知,则三棱锥O-ABC为正四面体,棱长为1,∴表面积为S=4×$4×\frac{1}{2}×1×\frac{\sqrt{3}}{2}=\sqrt{3}$.
故答案为:②③.

点评 本题主要考察了向量的相关概念,综合性较强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知点P(2,6)和圆x2+y2+2x-4y-4=0,解答下列问题:
(1)求圆心和半径;
(2)判断点P是否在圆上;
(3)求圆上的点到点P的最长距离和最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,则实数a的取值范围为(  )
A.(-∞,0]B.[-1,3]C.[3,5]D.[5,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,如果输出的S值大于$\frac{5}{3}$,则输入的正整数N的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某市教育局邀请教育专家深入该市多所中小学,开展听课、访谈及随堂检测等活动.他们把收集到的180节课分为三类课堂教学模式:教师主讲的为A模式,少数学生参与的为B模式,多数学生参与的为C模式.A、B、C三类课的节数比例为3:2:1
(Ⅰ)为便于研究分析,教育专家将A模式称为传统课堂模式,B、C统称为新课堂模式,根据随堂检测结果,把课堂教学效率分为高效和非高效,根据检测结果统计得到如下2×2列联表(单位:节)
高效非高效统计
新课堂模式603090
传统课堂模式405090
统计10080180
请根据统计数据回答:有没有99%的把握认为课堂教学效率与教学模式有关?并说明理由.
(Ⅱ)教育专家采用分层抽样的方法从收集到的180节课中选出18节课作为样本进行研究,并从样本的B模式和C模式课堂中随机抽取3节课.
①求至少有一节为C模式课堂的概率;
②设随机抽取的3节课中含有C模式课堂的节数为X,求X的分布列和数学期望.
参考临界值表:
P(K2≧K00.100.050.0250.0100.0050.001
K02.7063.8415.0246.6357.89710.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n =a +b +c +d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=a+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.(t$是参数).
(Ⅰ)写出曲线C的普通方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,且|AB|=$\sqrt{14}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输入x=30,则输出的结果为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数);
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)已知点P(1,0),若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四面体ABCD中,AD=BD,∠ABC=90°,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD.求证:
(1)EF=$\frac{1}{2}$BC;
(2)平面EFD⊥平面ABC.

查看答案和解析>>

同步练习册答案