精英家教网 > 高中数学 > 题目详情
10.如图,A是两条平行直线之间的一定点,且点A到两条平行直线的距离分别为AM=1,AN=$\sqrt{3}$.设△ABC,AC⊥AB,且顶点B、C分别在两条平行直线上运动,则$\frac{1}{AB}$+$\frac{\sqrt{3}}{AC}$的最大值为$\sqrt{2}$.

分析 根据已知条件把原式转化为sin∠MBA+sin∠NCA,进而利用角的关系,和两角和公式对其化简确定最大值.

解答 解:∵AM=1,AN=$\sqrt{3}$.
∴$\frac{1}{AB}$+$\frac{\sqrt{3}}{AC}$=$\frac{AM}{AB}$+$\frac{AN}{AC}$=sin∠MBA+sin∠NCA,
∵∠MAB+∠NAC=90°,∠NCA+∠NAC=90°,
∴∠NAC=∠MAB,
∴∠MAB+∠MBA=90°,
∴sin∠MBA+sin∠NCA=sin∠MBA+cos∠MBA=$\sqrt{2}$sin(∠MBA+$\frac{π}{4}$)≤$\sqrt{2}$,当∠MBA=$\frac{π}{4}$取最大值,
故答案为:$\sqrt{2}$

点评 本题主要考查了解三角形问题的实际应用.解题重要的地方是把实际问题转化为解三角形的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=2x-$\frac{3}{x}$+alnx(a∈R),g(x)=3x-$\frac{3}{x}$.
(1)求函数f(x)的单调区间;
(2)若函数g(x)的图象与f(x)的图象有两个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(2,6)和圆x2+y2+2x-4y-4=0,解答下列问题:
(1)求圆心和半径;
(2)判断点P是否在圆上;
(3)求圆上的点到点P的最长距离和最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC是半径为5的圆O的内接三角形,且$tanA=\frac{4}{3}$,若$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}(x、y∈R)$,则x+y的最大值为(  )
A.$\frac{4}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.1D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组既要有教师,又要有学生,不同的安排方案共有28种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,PA=$\sqrt{6}$,M为PC的中点.
(1)求异面直线PB与MD所成的角的大小;
(2)求平面PCD与平面PAD所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,则实数a的取值范围为(  )
A.(-∞,0]B.[-1,3]C.[3,5]D.[5,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,如果输出的S值大于$\frac{5}{3}$,则输入的正整数N的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数);
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)已知点P(1,0),若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案