精英家教网 > 高中数学 > 题目详情

【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.

该公司将最近承揽的100件包裹的重量统计如下:

包裹重量(单位:

1

2

3

4

5

包裹件数

43

30

15

8

4

公司对近60天,每天揽件数量统计如下表:

包裹件数范围

0~100

101~200

201~300

301~400

401~500

包裹件数(近似处理)

50

150

250

350

450

天数

6

6

30

12

6

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;

(2)①估计该公司对每件包裹收取的快递费的平均值;

②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?

【答案】(1);(2)①15,②公司不应将前台工作人员裁员1人

【解析】分析:(1)包裹件数服从二项分布,故所求概率就是时的概率.

(2)先计算60天每件包裹收取的快递费的平均值,它就是公司对每件包裹收取的快递费的平均值.公司裁员与否取决于公司每日净利润的数学期望是增加还是减少,而每日净利润为每日收取的包裹数的数学期望与每件包裹收取的快递费的平均值的乘积减去每日工资总额300元.

详解:(1)样本中包裹件数在101~300之间的天数为36,频率

故可估计概率为

显然未来5天中,包裹件数在101~300之间的天数服从二项分布,

,故所求概率为

(2)①样本中快递费用及包裹件数如下表:

包裹重量(单位:

1

2

3

4

5

快递费(单位:元)

10

15

20

25

30

包裹件数

43

30

15

8

4

故样本中每件快递收取的费用的平均值为

故该公司对每件快递收取的费用的平均值可估计为15元.

②根据题意及(2)①,揽件数每增加1,公司快递收入增加15(元),

若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:

故公司平均每日利润的期望值为(元);

若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:

故公司平均每日利润的期望值为(元)

,故公司不应将前台工作人员裁员1人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的最大值和最小值,并求取得最大值和最小值时对应的的值;

2)设方程在区间内有两个相异的实数根,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率,记该班级完成首背诵后的总得分为.

(1)求的概率;

(2)记,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,恒成立,求实数的取值范围;

(2)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,对任意恒成立.

1)求的解析式;

2)若,对于实数,记函数在区间上的最小值为,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为左右焦点,且与直线相切于点.

(1)求椭圆的方程及点的坐标;

(2)若直线与椭圆交于两点,且于点(异于点),求证:线段长成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以坐标原点为极点,以轴正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.

(1)请分别写出直线与曲线的直角坐标方程;

(2)已知直线与曲线交于两点,设,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)设,若对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,有两种方式,甲为投资债券等稳健型产品,乙为投资股票等风险型产品,设投资甲、乙两种产品的年收益分别为万元,根据长期收益率市场预测,它们与投入资金万元的关系分别为,(其中都为常数),函数对应的曲线,如图所示

(1)求函数的解析式

(2)若该家庭现有万元资金,全部用于理财投资,问:如何分配资金能使一年的投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

同步练习册答案