精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2,g(x)=alnx+bx(a>0).
(1)若f(1)=g(1),f′(1)=g′(1),求F(x)=f(x)-g(x)的极小值;
(2)在(1)的结论下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m成立?若存在,求出k和m,若不存在,说明理由.
(1)f′(x)=2x,g′(x)=
a
x
+b
,代入可得:a=1,b=1
∴F(x)=x2-lnx-x,
F′(x)=2x-
1
x
-1
=
2x2-x-1
x
=
(x-1)(2x+1)
x

∵当x∈(0,1)时,F′(x)<0,当x∈(1,+∞)时,F′(x)>0,
∴F(x)在(0,1)递减,(1,+∞)递增,
∴F(x)的极小值为F(1)=0
(2)由(1)得,(1,1)是f(x)和g(x)的公共点,
f(x)在点(1,1)处的切线方程是y=2x-1
∴若存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m成立
即f(x)≥2x-1和g(x)≤2x-1同时成立
∵f(x)-2x+1=x2-2x+1=(x-1)2≥0,
∴f(x)≥2x-1
令h(x)=g(x)-2x+1,h′(x)=
1
x
-1=
1-x
x

∴h(x) 在(0,1)递增,(1,+∞)递减,
∴h(x)max=h(1)=0,
∴h(x)≤0,即g(x)≤2x-1成立
∴存在k=2,m=-1使得f(x)≥kx+m和g(x)≤kx+m成立
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案