精英家教网 > 高中数学 > 题目详情

【题目】有三个游戏规则如表,袋子中分别装有形状、大小相同的球,从袋中无放回地取球,

游戏1

游戏2

游戏3

袋中装有3个黑球和2个白球

袋中装有2个黑球和2个白球

袋中装有3个黑球和1个白球

从袋中取出2个球

从袋中取出2个球

从袋中取出2个球

若取出的两个球同色,则甲胜

若取出的两个球同色,则甲胜

若取出的两个球同色,则甲胜

若取出的两个球不同色,则乙胜

若取出的两个球不同色,则乙胜

若取出的两个球不同色,则乙胜

问其中不公平的游戏是(
A.游戏2
B.游戏3
C.游戏1和游戏2
D.游戏1和游戏3

【答案】C
【解析】解:对于游戏1,取出两球同色的概率为 ,取出不同色的概率为 ,不公平; 对于游戏2,取出两球同色的概率为 ,取出不同色的概率为 ,不公平;
对于游戏3,取出两球同色即全是黑球,概率为0.5,取出不同色的也为0.5,公平;
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成的角的大小;
(2)证明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(单位:元)

8

8.2

8.4

8.6

8.8

9

销量y(单位:万件)

90

84

83

80

75

68


(1)现有三条y对x的回归直线方程: =﹣10x+170; =﹣20x+250; =﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.
(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的单调区间和极值.

)若对于任意,都有成立,求的取值范围 ;

)若证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,记录如下:

88

89

92

90

91

84

88

96

89

93

(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.(用样本数据特征来说明.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:

物体重量(单位g)

1

2

3

4

5

弹簧长度(单位cm)

1.5

3

4

5

6.5

参考公式:
①.样本数据x1 , x2 , …xn的标准差
s= ,其中 为样本的平均数;
②.线性回归方程系数公式 = = =

(1)画出散点图;
(2)利用所给的参考公式,求y对x的回归直线方程;
(3)预测所挂物体重量为8g时的弹簧长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点A(1,0),D(﹣1,0),点B,C在单位圆O上,且∠BOC=
(Ⅰ)若点B( ),求cos∠AOC的值;
(Ⅱ)设∠AOB=x(0<x< ),四边形ABCD的周长为y,将y表示成x的函数,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(m+2)x+(2m+5)(m≠0)的两个零点分别在区间(﹣1,0)和区间(1,2)内,则实数m的取值范围是

查看答案和解析>>

同步练习册答案