精英家教网 > 高中数学 > 题目详情
数列1,1+a,1+a+a2,…,1+a+a2+…+an-1,…,的前n项和Sn是否与a无关,即为常数?

解:当a=0时,不是等比数列,但Sn=n;

当a=1时,Sn=.当a≠0且a≠1时,an=∴Sn=[(a1+a2+…+an)-n]=[n-].

∴Sn与a有关,不为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P1(x1,y1)、P2(x2,y2)是函数f(x)=
2x
2x+
2
图象上的两点,且
OP
=
1
2
(
OP1
+
OP2
)
,点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n项和,若Tn<a(Sn+1+
2
)
对一切n∈N*都成立,试求a的取值范围.
an-1+1=
an
n

(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=0,4an+1=4an+2
4an+1
+1
,令bn=
4an+1

(1)试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;
(2)令Tn=
b1×b3×b5×…×b(2n-1)
b2×b4×b6×…b2n
,是否存在实数a,使得不等式Tn
bn+1
2
log2(a+1)
对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由.
(3)比较bnbn+1bn+1bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)+ax,(a∈R),(e=2.718281828…)
(1)当a=-1时,求函数f(x)的单调区间及极值;
(2)令g(x)=(1-a)x,当x∈[e-1,2]时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(3)令an=1+
n2n
,记数列{an}的前n项积为Tn,求证:Tn<e2

查看答案和解析>>

科目:高中数学 来源: 题型:

数列-1,1,-1,1,…的通项公式是(  )

查看答案和解析>>

同步练习册答案