精英家教网 > 高中数学 > 题目详情

【题目】随机抽取某厂的某种产品400件,经质检,其中有一等品252件、二等品100件、三等品40件、次品8.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.1件产品的利润(单位:万元)为.

1)求的分布列和1件产品的平均利润(即的期望);

2)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.75万元,则三等品率最多是多少?

【答案】1)分布列见解析,;(21%

【解析】

1)根据样本数据求出概率,得分布列,由期望公式可计算出期;

2)设技术革新后的三等品率为,与(1)类似求出的期望值,由此期望值不小于4.75可得的最大值.

1的所有可能取值有621,-2

的分布列为:

6

2

1

2

0.63

0.25

0.1

0.02

2)设技术革新后的三等品率为,则此时1件产品的平均利润为,

依题意,,即,解得所以三等品率最多为1%.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下顶点分别为,且其离心率为.

1)求椭圆的标准方程;

2)点是直线上的一个动点,直线分别交椭圆两点(四点互不重合),请判断直线是否恒过定点.若过定点,求出定点的坐标;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,函数在区间上的最小值为-5,求的值;

(Ⅱ)设,且有两个极值点.

(i)求实数的取值范围;

(ii)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组: ,并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的六面体中,四边形ABCD是边长为2的正方形,四边形ABEF是梯形,,平面平面ABEFBE2AF=2EF.

1)在图中作出平面ABCD与平面DEF的交线,并写出作图步骤,但不要求证明;

2)求证:平面DEF

3)求平面ABEF与平面ECD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若存在实数,使,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆:)上,且点到左焦点的距离为3.

1)求椭圆的标准方程;

2)设点关于坐标原点的对称点为,又两点在椭圆上,且,求凸四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司新发明了甲、乙两种不同型号的手机,公司统计了消费者对这两种型号手机的评分情况,作出如下的雷达图,则下列说法不正确的是( )

A. 甲型号手机在外观方面比较好.B. 甲、乙两型号的系统评分相同.

C. 甲型号手机在性能方面比较好.D. 乙型号手机在拍照方面比较好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前n项和为,若数列的各项按如下规律排列:,…,,…有如下运算和结论:①;②数列,…是等比数列;③数列,…的前项和为;④若存在正整数,使,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)

查看答案和解析>>

同步练习册答案