分析 利用配方法求出圆的标准方程可得圆心和半径,由直线l:x+ay-1=0经过圆C的圆心(2,1),求得a的值,可得点A的坐标,求出以CA为直径的圆的方程,即可求出直线BD的方程.
解答 解:由圆C:x2+y2-4x-2y+1=0得,(x-2)2+(y-1)2 =4,
所以C(2,1)为圆心、半径为2,
由题意可得,直线l:x+ay-1=0经过圆C的圆心(2,1),
故有2+a-1=0,得a=-1,则点A(-4,-1),
即|AC|=$\sqrt{(2+4)^{2}+(1+1)^{2}}$=2$\sqrt{10}$,CA的中点为(-1,0)
所以以CA为直径的圆的方程为(x+1)2+y2=10,
与圆C 相减可得直线BD的方程为6x+2y-10=0,
故答案为:6x+2y-10=0.
点评 本题考查圆的方程的求法,考查直线与圆、圆与圆的位置关系,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-e-$\frac{1}{e}$) | B. | (-∞,e+$\frac{1}{e}$) | C. | (-e-$\frac{1}{e}$,-2) | D. | (-∞,-$\frac{1}{e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,sinx0+cosx0=$\frac{3}{2}$ | |
| B. | ?x≥0且x∈R,2x>x2 | |
| C. | 已知a,b为实数,则a>2,b>2是ab>4的充分条件 | |
| D. | 已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com