【题目】已知双曲线
的左、右焦点分别为F1、F2,过点F1作圆x2+y2=a2的切线交双曲线右支于点M,若tan∠F1MF2=2,又e为双曲线的离心率,则e2的值为( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】已知函数
,函数g(x)=f(1-x)-kx+k-
恰有三个不同的零点,则k的取值范围是( )
A. (-2-
,0]∪
B. (-2+
,0]∪![]()
C. (-2-
,0]∪
D. (-2+
,0]∪![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点O为坐标原点,椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,离心率为
,点I,J分别是椭圆C的右顶点、上顶点,△IOJ的边IJ上的中线长为
.
(1)求椭圆C的标准方程;
(2)过点H(-2,0)的直线交椭圆C于A,B两点,若AF1⊥BF1,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字
的素数个数大约可以表示为
的结论(素数即质数,
).根据欧拉得出的结论,如下流程图中若输入
的值为
,则输出
的值应属于区间( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知
分别是椭圆
:
(
)的左右焦点,点
是椭圆
上一点,且
.若椭圆
的内接四边形
的边
的延长线交于椭圆外一点
,且点
的横坐标为1,记直线
的斜率分别为
,
.
![]()
(1)求椭圆
的标准方程;
(2)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣sinx(a∈R).
(1)当
时,f(x)
0恒成立,求正实数a的取值范围;
(2)当a≥1时,探索函数F(x)
f(x)﹣cosx+a﹣1在(0,π)上的零点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为
(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为
.
(1)把曲线C1的方程化为普通方程,C2的方程化为直角坐标方程;
(2)若曲线C1,C2相交于A,B两点,AB的中点为P,过点P做曲线C2的垂线交曲线C1于E,F两点,求|PE||PF|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),将曲线
上各点纵坐标伸长到原来的
倍(横坐标不变),得到曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)写出曲线
的极坐标方程与直线
的直角坐标方程;
(2)曲线
上是否存在不同的两点
,
(以上两点坐标均为极坐标,
,
,
,
),使点
、
到
的距离都为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com