精英家教网 > 高中数学 > 题目详情
1.在正三棱柱中,CC1=BC,点F是BC的中点,点 H在线段B1B 上运动.
(1)请在图中绘制平面AFH,使 FC1⊥平面AFH,说明点H的位置.
(2)在(1)问的条件下,求平面AFH与平面AA1B1B 所成角的正弦值.

分析 (1)过H作FH⊥C1F交BB1于H,连接AH,AF,C1H.则平面AFH即为所要作的平面.设AB=1,HB=x,利用勾股定理列方程解出x即可判断H的位置;
(2)以F为原点建立坐标系,则$\overrightarrow{F{C}_{1}}$为平面AFH的法向量,取AB中点D,则$\overrightarrow{DC}$为平面AA1B1B 的法向量,求出cos<$\overrightarrow{DC},\overrightarrow{F{C}_{1}}$>,则二面角的正弦值为$\sqrt{1-co{s}^{2}<\overrightarrow{DC},\overrightarrow{F{C}_{1}}>}$.

解答 解:(1)过F作FH⊥C1F交BB1于H,连接AH,AF,C1H.则平面AFH即为所要作的平面.
∵FC1⊥平面AFH,FH?平面AFH,
∴C1F⊥FH,
设HB=x,BC=CC1=1,则B1H=1-x,B1C1=1,BF=CF=$\frac{1}{2}$
∴FH2=HB2+BF2=x2+$\frac{1}{4}$,C1F2=CC12+CF2=$\frac{5}{4}$,
C1H2=B1C12+B1H2=x2-2x+2.
∵C1F⊥FH,
∴C1H2=HF2+C1F2,即x2-2x+2=x2+$\frac{1}{4}$+$\frac{5}{4}$,解得x=$\frac{1}{4}$.
∴H为BB1靠近B的四等分点.
(2)设B1C1的中点为E,则EF⊥平面ABC.
以F为原点,以FA,FB,FE为坐标轴建立空间直角坐标系,如图所示,
则F(0,0,0),C1(0,-$\frac{1}{2}$,1),A($\frac{\sqrt{3}}{2}$,0,0),
B(0,$\frac{1}{2}$,0),C(0,-$\frac{1}{2}$,0).
∵C1F⊥平面AFH,∴平面AFH的一个法向量为$\overrightarrow{F{C}_{1}}$=(0,-$\frac{1}{2}$,1),
取AB的中点D,连接CD,则CD⊥AB,
∵AA1⊥平面ABC,CD?平面ABC,∴AA1⊥CD.
又AA1∩AB=A,AA1?平面ABB1A1,AB?平面ABB1A1
∴CD⊥平面ABB1A1
∵D是AB的中点,∴D($\frac{\sqrt{3}}{4}$,$\frac{1}{4}$,0).∴$\overrightarrow{DC}$=(-$\frac{\sqrt{3}}{4}$,-$\frac{3}{4}$,0)为平面ABB1A1的一个法向量.
∴cos<$\overrightarrow{DC},\overrightarrow{F{C}_{1}}$>=$\frac{\overrightarrow{DC}•\overrightarrow{F{C}_{1}}}{|\overrightarrow{DC}||\overrightarrow{F{C}_{1}}|}$=$\frac{\frac{3}{8}}{\frac{\sqrt{3}}{2}•\frac{\sqrt{5}}{2}}$=$\frac{\sqrt{15}}{10}$.
∴平面AFH与平面AA1B1B 所成角的正弦值为$\frac{\sqrt{85}}{10}$.

点评 本题考查了线面垂直的性质,空间向量与二面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.sin(π+α)=-$\frac{1}{2}$,则sinα=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,程序框图输出的结果是1320.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过点(0,-1)且斜率为2的直线方程为2x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,如果输入a=$\sqrt{3}$,b=1,那么输出的b值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=$\frac{a{x}^{2}-8x+b}{{x}^{2}+1}$的最大值是9,最小值是1,则a=5,b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于函数f(x)=sin2x,下列说法错误的是①③④.
①f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是递增的;
②f(x)的图象关于原点对称;
③f(x)的最小正周期为2π;
④f(x)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=x2-bx-2.
(Ⅰ)当b=1,写出函数y=|f(x)|单调递增区间;
(Ⅱ)定义g(x)=$\left\{\begin{array}{l}{|f(x)|,x≥0}\\{f(x),x<0}\end{array}\right.$,若函数y=g(x)-$\frac{1}{2}$b在[-2,2]上有三个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,已知所取的2瓶全在保质期内的概率为$\frac{351}{435}$,则至少取到1瓶已过保质期的概率为$\frac{28}{145}$.

查看答案和解析>>

同步练习册答案