分析 根据韦达定理求出a,b的值,把a,b的值代入不等式,解不等式即可
解答 解:由不等式ax2-3x+6>4的解集为{x|x<1或x>b},
所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,b>1且a>0.
由根与系数的关系,得$\left\{\begin{array}{l}{1+b=\frac{3}{a}}\\{1×b=\frac{2}{a}}\end{array}\right.$,
解得a=1,b=2
所以不等式ax2-(2a+b)x+2b<0可化为x2-4x+4<0,
即(x-2)2<0,
解集为∅.
点评 本题考查了一元二次不等式的解法,考查了“三个二次”之间的关系,是基础的运算题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{81}$ | B. | $\frac{4}{27}$ | C. | $\frac{4}{9}$ | D. | $\frac{8}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | V=$\frac{1}{3}$abc (a,b,c为底边边长) | |
| B. | V=$\frac{1}{3}$Sh(S为地面面积,h为四面体的高) | |
| C. | V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c为底边边长,h为四面体的高) | |
| D. | V=$\frac{1}{3}$(S1+S2+S3+S4)r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | (0,3] | C. | [$\frac{1}{2}$,3] | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 26 | B. | 27 | C. | 28 | D. | 29 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,-\sqrt{3}}]∪({\sqrt{3},+∞})$ | B. | $({-∞,-\sqrt{3}})∪[{\sqrt{3},+∞})$ | C. | $({-∞,0}]∪({\sqrt{3},+∞})$ | D. | $({-∞,0})∪[{\sqrt{3},+∞})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com