精英家教网 > 高中数学 > 题目详情
17.(1)已知x>1,求3x+$\frac{4}{x-1}$+1的最小值;
(2)已知0≤x≤2,求函数f(x)=$\sqrt{x(4-2x)}$的最值.

分析 (1)根据基本不等式的性质求出最小值即可;
(2)根据二次函数的性质求出函数的范围即可.

解答 解:(1)∵x>1,∴x-1>0,
∴3x+$\frac{4}{x-1}$+1=3(x-1)+$\frac{4}{x-1}$+4≥2$\sqrt{3(x-1)•\frac{4}{x-1}}$+4=4$\sqrt{3}$+4,
当且仅当3(x-1)=$\frac{4}{x-1}$时“=”成立,
故3x+$\frac{4}{x-1}$+1的最小值是:4$\sqrt{3}$+4;
(2)令g(x)=x(4-2x)=-2(x-1)2+2,x∈[0,2],
对称轴x=1,g(x)在[0,1)递增,在(1,2]递减,
∴g(x)max=g(1)=2,g(x)min=g(0)=g(2)=0,
∴0≤f(x)≤$\sqrt{2}$.

点评 本题考查了基本不等式的性质,考查二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是16$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列不等式(组)
(1)2x2-3x-5≥($\frac{1}{2}$)x+2;          
(2)$\left\{\begin{array}{l}{\frac{2x+1}{x-3}>1}\\{{x}^{2}+x-20≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在直角坐标系中,A、B分别是x轴和y轴上的动点,若以线段AB为直径的圆C与直线x+y-4=0相切,则圆C面积的最小值为(  )
A.B.C.πD.$\frac{1}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知在长方体ABCD-A1B1C1D1中,AD=A1A=$\frac{1}{2}$AB=2,点E是棱AB上一点,且$\frac{AE}{EB}$=λ.
(1)证明:D1E⊥A1D;
(2)若二面角D1-EC-D的余弦值为$\frac{\sqrt{6}}{3}$,求CE与平面D1ED所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.解不等式ax2-(2a+b)x+2b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,若$(\;{a^2}+{c^2}-{b^2})tanB=\sqrt{3}$ac,则角B=(  )
A.30°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列几何体是组合体的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.角α的终边上有一点M(-2,4),则tanα=-2.

查看答案和解析>>

同步练习册答案