| A. | 4π | B. | 2π | C. | π | D. | $\frac{1}{2}$π |
分析 由O向直线x+y-4=0做垂线,垂足为D,当D恰为圆与直线的切点时,圆C的半径最小,此时圆的直径为O(0,0)到直线x+y-4=0的距离,由此能求出圆C面积最小值.
解答 解:∵AB为直径,∠AOB=90°,
∴O点必在圆C上,
由O向直线x+y-4=0做垂线,垂足为D,
则当D恰为圆与直线的切点时,圆C的半径最小,
此时圆的直径为O(0,0)到直线x+y-4=0的距离d=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$,
∴此时圆的半径r=$\sqrt{2}$,
∴圆C面积最小值Smin=πr2=2π.
故选:B.
点评 本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题.
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,3} | B. | {3} | C. | [0,$\sqrt{3}$) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | V=$\frac{1}{3}$abc (a,b,c为底边边长) | |
| B. | V=$\frac{1}{3}$Sh(S为地面面积,h为四面体的高) | |
| C. | V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c为底边边长,h为四面体的高) | |
| D. | V=$\frac{1}{3}$(S1+S2+S3+S4)r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 26 | B. | 27 | C. | 28 | D. | 29 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com