精英家教网 > 高中数学 > 题目详情
5.在直角坐标系中,A、B分别是x轴和y轴上的动点,若以线段AB为直径的圆C与直线x+y-4=0相切,则圆C面积的最小值为(  )
A.B.C.πD.$\frac{1}{2}$π

分析 由O向直线x+y-4=0做垂线,垂足为D,当D恰为圆与直线的切点时,圆C的半径最小,此时圆的直径为O(0,0)到直线x+y-4=0的距离,由此能求出圆C面积最小值.

解答 解:∵AB为直径,∠AOB=90°,
∴O点必在圆C上,
由O向直线x+y-4=0做垂线,垂足为D,
则当D恰为圆与直线的切点时,圆C的半径最小,
此时圆的直径为O(0,0)到直线x+y-4=0的距离d=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$,
∴此时圆的半径r=$\sqrt{2}$,
∴圆C面积最小值Smin=πr2=2π.
故选:B.

点评 本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设定义在(0,+∞)的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)-log2x]=6.方程f(x)-f'(x)=4在下列哪个区间内有解(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC中,若b2+c2+$\sqrt{2}$bc=a2,则∠A=(  )
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:f(x)≥x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2-3>0},N={n|1≤2n≤13且n∈Z},则N∩M=(  )
A.{2,3}B.{3}C.[0,$\sqrt{3}$)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三角形的面积为S=$\frac{1}{2}$(a+b+c)r,a,b,c为三边的边长,r为三角形内切圆半径,利用类比推理可得出四面体的体积为(  )
A.V=$\frac{1}{3}$abc (a,b,c为底边边长)
B.V=$\frac{1}{3}$Sh(S为地面面积,h为四面体的高)
C.V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c为底边边长,h为四面体的高)
D.V=$\frac{1}{3}$(S1+S2+S3+S4)r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知x>1,求3x+$\frac{4}{x-1}$+1的最小值;
(2)已知0≤x≤2,求函数f(x)=$\sqrt{x(4-2x)}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将正奇数排成如图所示的三角形数阵(第k行有k个奇数),其中第i行第j个数表示为aij,例如a42=15,若aij=2015,则i-j=(  )
A.26B.27C.28D.29

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,a、b、c分别是角A、B、C所对的边,a=4,A=30°,B=60°,则b等于4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案