| A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
分析 由题意可得f(x)-log2x为定值,设为t,代入可得t=4,进而可得函数的解析式,化方程有解为函数F(x)=f(x)-f′(x)-4=log2x-1xln2有零点,结合F(1)<0,F(2)>0,由零点存在性定理得答案.
解答 解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)-log2x为定值,
设t=f(x)-log2x,则f(x)=t+log2x
又由f(t)=6,可得t+log2t=6,
可解得t=4,故f(x)=4+log2x,f′(x)=$\frac{1}{xln2}$,
设x0是方程f(x)-f′(x)=4的一个解,
∴x0是函数F(x)=f(x)-f′(x)-4=log2x-$\frac{1}{xln2}$的零点,
∵F(1)=-$\frac{1}{in2}$<0,F(2)=1-$\frac{1}{2ln2}$=1-$\frac{1}{ln4}$>0,
∴函数F(x)的零点介于(1,2)之间,
故选:B.
点评 本题考查函数零点判定定理,考查了数学转化思想方法,考查逻辑思维能力与推理运算能力,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | .若m⊥n,m⊥α,n∥β,则α∥β | B. | 若m∥α,n∥β,α∥β,则m∥n | ||
| C. | .若m⊥α,n∥β,α∥β,则m⊥n | D. | .若m∥n,m∥α,n∥β,则α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (-∞,$\frac{1}{3}$) | C. | ($\frac{1}{3}$,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 2π | C. | π | D. | $\frac{1}{2}$π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com