精英家教网 > 高中数学 > 题目详情
20.若不等式|2x-3|<4与不等式x2+px+q<0的解集相同.
(Ⅰ)求实数p,q值;
(Ⅱ)若实数a,b,c∈R+,满足a+b+c=2p-4q,求证:$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{3}$.

分析 (Ⅰ)根据题意不等式x2+px+q<0的解集为(-$\frac{1}{2}$,$\frac{7}{2}$),利用韦达定理,从而可以求得p与q的值.
(Ⅱ)a+b+c=2p-4q=1,由柯西不等式得($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2≤(a+b+c)(1+1+1),代入已知a+b+c=1即得;

解答 解:(Ⅰ)∵不等式-4<2x-3<4的解集为(-$\frac{1}{2}$,$\frac{7}{2}$),
∴不等式x2+px+q<0的解集是(-$\frac{1}{2}$,$\frac{7}{2}$),
∴$\frac{1}{2}$+$\frac{7}{2}$=-p,(-$\frac{1}{2}$)×$\frac{7}{2}$=q
∴p=-3,q=-$\frac{7}{4}$;
(Ⅱ)a+b+c=2p-4q=1,
由柯西不等式得($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2≤(a+b+c)(1+1+1)
代入已知a+b+c=1,
∴($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2≤3,
∴$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{3}$,
当且仅当=b=c=1,取等号.

点评 本题是一道考查逆向思维的题目,考查了一般形式的柯西不等式.证明不等式时,关键是如何凑成能利用一般形式的柯西不等式的形式,注意重要不等式中等号成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.对x∈R,y∈R,已知f(x+y)=f(x)•f(y),且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$+$\frac{f(2016)}{f(2015)}$的值为4030.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:lg4+lg5•lg20+(lg5)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列四个命题:
①两直线平行的充要条件是它们的斜率相等;
②圆(x+2)2+(y+1)2=4与直线x-2y=0相交,所得弦长为4;
③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;
④抛物线上任一点M到其焦点的距离都等于点M到其准线的距离.
其中,正确命题的序号为②④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设定义在(0,+∞)的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)-log2x]=6.方程f(x)-f'(x)=4在下列哪个区间内有解(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果AC<0且BC<0,那么直线Ax+By-C=0不通过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设随机变量ξ~B(4,$\frac{1}{3}$),则P(ξ=2)的值为(  )
A.$\frac{4}{81}$B.$\frac{4}{27}$C.$\frac{4}{9}$D.$\frac{8}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,若x+2y>a2+8a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三角形的面积为S=$\frac{1}{2}$(a+b+c)r,a,b,c为三边的边长,r为三角形内切圆半径,利用类比推理可得出四面体的体积为(  )
A.V=$\frac{1}{3}$abc (a,b,c为底边边长)
B.V=$\frac{1}{3}$Sh(S为地面面积,h为四面体的高)
C.V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c为底边边长,h为四面体的高)
D.V=$\frac{1}{3}$(S1+S2+S3+S4)r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径)

查看答案和解析>>

同步练习册答案