精英家教网 > 高中数学 > 题目详情
19.在边长为2的正方形ABCD中,动点M和N分别在边BC和CD上,且$\overrightarrow{BM}$=$λ\overrightarrow{BC}$,$\overrightarrow{DN}$=$\frac{1}{4λ+1}$$\overrightarrow{DC}$,则$\overrightarrow{AM}$•$\overrightarrow{BN}$的最小值为-1.

分析 建立平面直角坐标系,求出$\overrightarrow{AM}$•$\overrightarrow{BN}$关于λ的函数,利用基本不等式得出最小值.

解答 解:以CB,CD为坐标轴建立平面直角坐标系如图:
则A(2,2),B(2,0),M(2-2λ,0),N(0,2-$\frac{2}{4λ+1}$).
∴$\overrightarrow{AM}$=(-2λ,-2),$\overrightarrow{BN}$=(-2,$\frac{8λ}{4λ+1}$).
∴$\overrightarrow{AM}$•$\overrightarrow{BN}$=4λ-$\frac{16λ}{4λ+1}$=4λ+1+$\frac{4}{4λ+1}$-5$≥2\sqrt{4}$-5=-1.
当且仅当4λ+1=$\frac{4}{4λ+1}$即λ=$\frac{1}{4}$时取等号.
故答案为:-1.

点评 本题考查了平面向量的数量积运算,建立平面直角坐标系可简化计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设数列{an}是公比小于1的正项等比数列,Sn为数列{an}的前n项和,已知S2=12,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=an•(n-λ),且数列{bn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[-2,0]时,f(x)=${(\frac{{\sqrt{2}}}{2})^x}$-1,若在区间(-2,6)内,函数y=f(x)-loga(x+2)(a>1)恰有1个零点,则实数a的取值范围是(  )
A.(1,4]B.(1,2)∪(4,+∞)C.(4,+∞)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.二项式(x-$\frac{1}{x}$)6的展开式中x-2的系数为(  )
A.6B.15C.20D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z满足$\frac{1+z}{1-z}$=i(i为虚数单位),则|z|等于(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设Sn是数列{an}的前n项和,且Sn=2an-1.
(1)证明:数列{an}是等比数列;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z满足$\frac{z-i}{z}$=i,则z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正项数列{an}的前n项和为Sn,当n≥2时,(an-Sn-12=SnSn-1,且a1=1,设bn=log2$\frac{{a}_{n+1}}{3}$,则b1+b2+…+bn=n2-n.

查看答案和解析>>

同步练习册答案