分析 (1)根据题意,列出方程组$\left\{\begin{array}{l}{{a}_{1}{+a}_{1}q=12}\\{2{(a}_{1}q+1){=a}_{1}{{+a}_{1}q}^{2}}\end{array}\right.$,求出a1和q的值,写出通项公式an即可;
(2)由(1)写出通项公式bn,根据数列{bn}是单调减数列,bn<bn-1,列不等式解不等式即可.
解答 解:(1)设正项等比数列{an}的公比为q,由题意得0<q<1,
∵S2=12,且a1,a2+1,a3成等差数列,
∴$\left\{\begin{array}{l}{{a}_{1}{+a}_{1}q=12}\\{2{(a}_{1}q+1){=a}_{1}{{+a}_{1}q}^{2}}\end{array}\right.$,
解得a1=8,q=$\frac{1}{2}$,
∴数列{an}的通项公式为an=8•${(\frac{1}{2})}^{n-1}$=${(\frac{1}{2})}^{n-4}$;
(2)由(1)知,bn=an•(n-λ)=${(\frac{1}{2})}^{n-4}$•(n-λ),
且数列{bn}是单调递减数列,
∴bn<bn-1,
∴bn-bn-1=(n-λ)•${(\frac{1}{2})}^{n-4}$-(n-1-λ)•${(\frac{1}{2})}^{n-5}$=${(\frac{1}{2})}^{n-4}$•(2+λ-n)<0,(n≥2);
∵上式对任意正整数n都成立,
∴实数λ的取值范围是λ<0.
点评 本题考查了等差与等比数列的应用问题,也考查了不等式的解法与应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1002×2015)2 | B. | (1008×2015)2 | C. | (2014×2015)2 | D. | (2016×2015)2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com