精英家教网 > 高中数学 > 题目详情
14.观察下列等式:
13=1
13+23=9
13+23+33=36
13+23+33+43=100
13+23+33+43+53=225

可以推测:13+23+33+…+20153=(  )
A.(1002×2015)2B.(1008×2015)2C.(2014×2015)2D.(2016×2015)2

分析 利用已知条件,找出规律写出结果即可.

解答 解:13=1
13+23=9=(1+2)2
13+23+33=36=(1+2+3)2
13+23+33+43=100=(1+2+3+4)2
13+23+33+43+53=225=(1+2+3+4+5)2

可以推测:13+23+33+…+20153═(1+2+3+…+2015)2=$[\frac{2015(2015+1)}{2}]^{2}$=(1008×2015)2
故选:B.

点评 本题考查归纳推理的应用,找出表达式的规律是解题的关键.考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知定点A(1,0),动点P在圆B:(x+1)2+y2=16上,线段PA的中垂线为直线l,直线l交直线PB于点Q,动点Q的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若点P在第二象限,且相应的直线l与曲线E和抛物线C:y=-$\frac{1}{32}$x2都相切,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知P是椭圆$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}$=1(a1>b1>0)和双曲线$\frac{x^2}{a_2^2}-\frac{y^2}{b_2^2}$=1(a2>0,b2>0)的一个交点,F1,F2是椭圆和双曲线的公共焦点,e1,e2分别为椭圆和双曲线的离心率,∠F1PF2=$\frac{2π}{3}$,则$\frac{1}{e_1}+\frac{1}{e_2}$的最大值为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设二次函数f(x)=ax2+bx+c(a>0),x1,x2为函数y=f(x)-x的两个零点,且满足0<x1<x2<$\frac{1}{a}$.当x∈(0,x1)时,则(  )
A.f(x)<x<x1B.x<x1<f(x)C.x<f(x)<x1D.x<x2<f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}是公比小于1的正项等比数列,Sn为数列{an}的前n项和,已知S2=12,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=an•(n-λ),且数列{bn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成5:1两段,则此椭圆的离心率为(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{4\sqrt{17}}}{17}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=lnx-x2的单调减区间是(  )
A.(-∞,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{2}}{2}$]C.[1,+∞)D.[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示的程序框图中,x∈[-2,2],则能输出x的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案