精英家教网 > 高中数学 > 题目详情
6.函数f(x)=lnx-x2的单调减区间是(  )
A.(-∞,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{2}}{2}$]C.[1,+∞)D.[$\frac{\sqrt{2}}{2}$,+∞)

分析 先求导,根据导数和函数的单调性的关系即可求出.

解答 解:∵f(x)=lnx-x2的定义域为(0,+∞),
∴f′(x)=$\frac{1}{x}$-2x≤0,
即x2≥$\frac{1}{2}$,
解的x≥$\frac{\sqrt{2}}{2}$,
故选:D.

点评 本题考查了导数和函数的单调性的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知一质点做直线运动时速度与时间的关系式为v(t)=t2-t+6,则此质点在t∈[1,4]时间内的位移为$\frac{63}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆O:(x-a)2+y2=4上存在两点关于直线x-y-2=0对称,则过抛物线y2=4x焦点的直线l与圆O交于A,B两点,最短弦长|AB|等于(  )
A.1B.$\sqrt{3}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.观察下列等式:
13=1
13+23=9
13+23+33=36
13+23+33+43=100
13+23+33+43+53=225

可以推测:13+23+33+…+20153=(  )
A.(1002×2015)2B.(1008×2015)2C.(2014×2015)2D.(2016×2015)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin2x+2sinxcosx-cos2x.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x2-x)lnx-$\frac{3}{2}{x^2}$+2x.
(1)求函数f(x)的单调区间;
(2)设函数g(x)=$\frac{(a+1)x}{lnx}$,对任意x∈(1,+∞)都有f(x)>g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-lnx.
(Ⅰ)若a≤1,证明:x≥1时,x2≥f(x)恒成立;
(Ⅱ)当a>0时,讨论函数y=f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数$\frac{a-i}{1+i}$(a∈R)是纯虚数,则复数3a+4i在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案