分析 (Ⅰ)利用垂直平分线的性质可得|QA|=|QP|,由|QB|+|QP|=4,可得|QB|+|QA|=4,利用椭圆的定义可得点Q的轨迹是一个椭圆;
(Ⅱ)设l:y=kx+m代入椭圆、抛物线的方程,利用判别式等于0,A与P关于直线l对称,即可求点P的坐标.
解答 解:(Ⅰ)由条件知:|QA|=|QP|,
∵|QB|+|QP|=4,
∴|QB|+|QA|=4,
∵|AB|=2<4,
所以点Q的轨迹是以B,A为焦点的椭圆,
∵2a=4,2c=2,∴b2=3,
∴曲线E的方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(Ⅱ)由题意,设l:y=kx+m①,代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1得(4k2+3)x2+8kmx+4(m2-3)=0,
∴△1=(8km)-4(4k2+3)×4(m2-3)=0,
∴4k2-m2+3=0②
把①代入:y=-$\frac{1}{32}$x2,得:$\frac{1}{32}$x2+kx+m=0,
由△2=${k}^{2}-4×\frac{1}{32}×m$=0,得m=8k2③>
由②③解得k=±$\frac{1}{2}$,m=2.
设P(x0,y0),则x0<0,y0>0
∵A与P关于直线l对称,kAP<0,
∴k>0,∴k=$\frac{1}{2}$,
∴l:y=$\frac{1}{2}$x+2,则$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=\frac{1}{2}×\frac{{x}_{0}+1}{2}+2}\\{\frac{{y}_{0}}{{x}_{0}-1}×\frac{1}{2}=-1}\end{array}\right.$,∴x0=-1,y0=4,
经检验P(-1,4)在圆C上.
故所求点P的坐标为P(-1,4).
点评 本题综合考查了圆与椭圆的定义及其标准方程、线段的垂直平分线、直线与椭圆、抛物线相切等基础知识与基本技能,考查了数形结合的能力、推理能力、计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 合格品数 | 次品数 | 总数 | |
| 第一台加工数 | 45 | 10 | 55 |
| 第二台加工数 | 40 | 5 | 45 |
| 总计 | 85 | 15 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1002×2015)2 | B. | (1008×2015)2 | C. | (2014×2015)2 | D. | (2016×2015)2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com