【题目】已知
为椭圆
上两点,过点
且斜率为
的两条直线与椭圆
的交点分别为
.
(Ⅰ)求椭圆
的方程及离心率;
(Ⅱ)若四边形
为平行四边形,求
的值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,点
,
为直线
:
上的动点,过
作
的垂线,该垂线与线段
的垂直平分线交于点
,记
的轨迹为
.
(1)求
的方程;
(2)若过
的直线与曲线
交于
,
两点,直线
,
与直线
分别交于
,
两点,试判断以
为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”;如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比,已知椭圆
.
![]()
(1)若椭圆
,判断
与
相似?如果相似,求出
与
的相似比;如果不相似,请说明理由;
(2)写出与椭圆
相似且焦点在
轴上,短半轴长为
的椭圆
的标准方程;若在椭圆
上存在两点
、
关于直线
对称,求实数
的取值范围;
(3)如图:直线
与两个“相似椭圆”
和
分别交于点
和点
,试在椭圆
和椭圆
上分别作出点
和点
(非椭圆顶点),使
和
组成以
为相似比的两个相似三角形,写出具体作法.(不必证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过坐标原点
的两条直线与椭圆
:
分别相交于点
、
和点
、
,其中直线
经过
的左焦点
,直线
经过
的右焦点
.当直线
不垂直于坐标轴时,
与
的斜率乘积为
.
(1)求椭圆
的方程;
(2)求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】矩阵乘法运算
的几何意义为平面上的点
在矩阵
的作用下变换成点
,记
,且
.
(1)若平面上的点
在矩阵
的作用下变换成点
,求点
的坐标;
(2)若平面上相异的两点
、
在矩阵
的作用下,分别变换为点
、
,求证:若点
为线段
上的点,则点
在
的作用下的点
在线段
上;
(3)已知△
的顶点坐标为
、
、
,且△
在矩阵
作用下变换成△
,记△
与△
的面积分别为
与
,求
的值,并写出一般情况(三角形形状一般化且变换矩阵一般化)下
与
的关系(不要求证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的
倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
![]()
则下列结论正确的是
![]()
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了
倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣x+1.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程:
(2)若非零实数a使得f(x)
ax
ax2
对x∈[1,+∞)恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com