精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}及等差数列{bn},若a1=3, (n≥2),a1=b2 , 2a3+a2=b4
(1)证明数列{an﹣2}为等比数列;
(2)求数列{an}及数列{bn}的通项公式;
(3)设数列{anbn}的前n项和为Tn , 求Tn

【答案】
(1)解:a1=3,

则数列{an﹣2}为首项为1,公比为 的等比数列


(2)解:由(1)可得 ,即为

,可得等差数列{bn}的公差

.


(3)证明:数列{anbn}的前n项和为Tn

相减可得

,化简可得 ,则 .


【解析】(1)当数列满足=q(q为常数)时即为等比数列;(2)根据等比数列的通项公式即可求出数列的通项公式,进而可求出an,再根据an可求出b2和b4,然后求出公差d,最后根据等差数列的通项公式bn=bm+(n-m)d即可求出bn;(3)利用”错位相减求和法“即可求解.
【考点精析】掌握等差数列的通项公式(及其变式)和等比数列的通项公式(及其变式)是解答本题的根本,需要知道通项公式:;通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列不等式的解集是空集的是(
A.x2﹣x+1>0
B.﹣2x2+x+1>0
C.2x﹣x2>5
D.x2+x>2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位N名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.下表是年龄的频率分布表.

区间

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人数

25

a

b


(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用斜二测画法画出图中水平放置的△OAB的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,y>0,且2x+8y-xy=0,求:
(1)xy的最小值;
(2)x+ y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果 是平面 内所有向量的一组基底,那么( )
A.若实数 ,使 ,则
B.空间任一向量 可以表示为 ,这里 是实数
C. 不一定在平面
D.对平面 内任一向量 ,使 的实数 有无数对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:在数列 中,若 为常数)则称 为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若 是“等方差数列”,在数列 是等差数列;
是“等方差数列”;
③若 是“等方差数列”,则数列 为常)也是“等方差数列”;
④若 既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a1a2 , …,an是1,2,…,n的一个排列,求证: ·

查看答案和解析>>

同步练习册答案