精英家教网 > 高中数学 > 题目详情
20.若函数f(x)=$\frac{\root{3}{x-1}}{{mx}^{2}+mx+3}$的定义域为R,求m的取值范围.

分析 根据函数的定义域转化为不等式恒成立问题即可.

解答 解:∵函数f(x)=$\frac{\root{3}{x-1}}{{mx}^{2}+mx+3}$的定义域为R,
∴mx2+mx+3≠0恒成立,
若m=0,则不等式为3≠0,满足条件,
若m≠0,则判别式△=m2-12m<0,
解得0<m<12,
综上0≤m<12.

点评 本题主要考查不等式恒成立问题,根据函数的定义域建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=alnx+$\frac{2{a}^{2}}{x}$+x(a≠0).若曲线y=f(x)在点(2,f(2))处切线与在点(4,f(4))处的切线互相平行,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是定义在(-1,1)上的奇函数,且f(x)在区间(-1,1)上是增函数,求满足f(a2-1)+f(a-1)<0的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知全集U={不大于20的素数},M,N为U的两个子集,且满足M∩(∁UN)={3,5},(∁UM)∩N={7,19},(∁UM)∩(∁UN)={2,17},求M,N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a、b为正数,考察如下两组条件的关系:
α:对任意的x>1,有ax+$\frac{x}{x-1}$>b都成立;
β:$\sqrt{a}$+2>$\sqrt{b}$
则α是β的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充要又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若3cos($\frac{π}{2}$-θ)+cos(π+θ)=0,则cos2θ+$\frac{1}{2}$sin2θ的值是$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=|x|-1的单调减区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在斜△ABC中,$\frac{tanAtanB+tanBtanC}{tanCtanA}$=$\frac{2{b}^{2}}{{a}^{2}+{c}^{2}-{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在一条直路边上有相距100$\sqrt{3}$米的A、B两定点,路的一侧是一片荒地,某人用三块长度均为100米的篱笆(不能弯折),将荒地围成一块四边形地块ABCD(直路不需要围),经开垦后计划在三角形地块ABD和三角形地块BCD分别种植甲、乙两种作物,已知两种作物的年收益都与各自地块的面积的平方成正比,且比例系数均为k(正常数),设∠DAB=α.
(1)当α=60°时,若要用一块篱笆将上述两三角形地块隔开,现要篱笆150米,问是否够用,说明理由;
(2)求使两块地的年总收益最大时,角α的余弦值.

查看答案和解析>>

同步练习册答案