【题目】已知椭圆C:
(
)的离心率为
,左、右焦点分别为
,
,过
的直线与C交于M,N两点,
的周长为
.
(1)求椭圆C的标准方程;
(2)过M作与y轴垂直的直线l,点
,试问直线
与直线l交点的横坐标是否为定值?请说明理由.
科目:高中数学 来源: 题型:
【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙两个地区采取防护措施后,统计了从2月7日到2月13日一周的新增“新冠肺炎”确诊人数,绘制成如下折线图:
![]()
(1)根据图中甲、乙两个地区折线图的信息,写出你认为最重要的两个统计结论;
(2)治疗“新冠肺炎”药品的研发成了当务之急,某药企计划对甲地区的
项目或乙地区的
项目投入研发资金,经过评估,对于
项目,每投资十万元,一年后利润是l.38万元、1.18万元、l.14万元的概率分别为
、
、
;对于
项目,利润与产品价格的调整有关,已知
项目产品价格在一年内进行2次独立的调整,每次价格调整中,产品价格下调的概率都是
,记
项目一年内产品价格的下调次数为
,每投资十万元,
取0、1、2时,一年后相应利润是1.4万元、1.25万元、0.6万元.记对
项目投资十万元,一年后利润的随机变量为
,记对
项目投资十万元,一年后利润的随机变量为
.
(i)求
,
的概率分布列和数学期望
,
;
(ii)如果你是投资决策者,将做出怎样的决策?请写出决策理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
是椭圆上一动点(与左、右顶点不重合)已知
的内切圆半径的最大值为
,椭圆的离心率为
.
(1)求椭圆C的方程;
(2)过
的直线
交椭圆
于
两点,过
作
轴的垂线交椭圆
与另一点
(
不与
重合).设
的外心为
,求证
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线
的焦点F且倾斜角为
的直线交抛物线于AB两点,交其准线于点C,且|AF|=|FC|,|BC|=2.
(1)求抛物线C的方程;
(2)直线l交抛物线C于DE两点,且这两点位于x轴两侧,与x轴交于点M,若
·
求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为
,准线为
,
为抛物线
过焦点
的弦,已知以
为直径的圆与
相切于点
.
(1)求
的值及圆的方程;
(2)设
为
上任意一点,过点
作
的切线,切点为
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(Ⅰ)试估计厨余垃圾投放正确的概率
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差
最大时,写出a,b,c的值(结论不要求证明),并求此时
的值.
(注:
,其中
为数据
的平均数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:
![]()
每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为正整数,区间
(其中
,
)同时满足下列两个条件:
①对任意
,存在
使得
;
②对任意
,存在
,使得
(其中
).
(Ⅰ)判断
能否等于
或
;(结论不需要证明).
(Ⅱ)求
的最小值;
(Ⅲ)研究
是否存在最大值,若存在,求出
的最大值;若不在在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com