精英家教网 > 高中数学 > 题目详情
P在直线2x+y+10=0上,PA、PB与圆x2+y2=4相切于A、B两点,则四边形PAOB面积的最小值为( )
A.24
B.16
C.8
D.4
【答案】分析:由题意可得,PA=PB,PA⊥OA,PB⊥OB则要求SPAOB=2S△PAO=的最小值,转化为求PA最小值,由于PA2=PO2-4,当PO最小时,PA最小,结合点到直线的距离公式可知当PO⊥l时,PO有最小值,由点到直线的距离公式可求.
解答:解:由圆x2+y2=4,得到圆心(0,0),半径r=2,
由题意可得:PA=PB,PA⊥OA,PB⊥OB,
∴SPAOB=2S△PAO=
在Rt△PAO中,由勾股定理可得:PA2=PO2-r2=PO2-4,
当PO最小时,PA最小,此时所求的面积也最小,
点P是直线l:2x+y+10=0上的动点,
当PO⊥l时,PO有最小值d=,PA=4,
所求四边形PAOB的面积的最小值为8.
故选C
点评:本题考查了直线与圆的位置关系中的重要类型:相切问题的处理方法,解题中要注意对性质的灵活应用,体现了转化思想在解题中的应用.根据题意得出PO⊥l时所求圆的面积最小是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点p(m,3)到直线4x-3y+1=0的距离为4,且点p在不等式2x+y<3表示的平面区域内,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2-2x+ay+1=0,且圆心在直线2x-y-1=0.
(1)求圆C的标准方程.
(2)若P点坐标为(2,3),求圆C的过P点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(m,3)到直线4x-3y+1=0的距离为5,且点P在不等式2x+y<3表示的平面区域内,则m=
-
17
4
-
17
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆C:x2+y2+4x+ay-5=0上任意一点,P点关于直线2x+y-1=0的对称点在圆上,则实数a等于
-10
-10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•福建模拟)给出以下四个结论:
(1)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2
(2)曲线y=1+
4-x2
(|x|≤2)
与直线y=k(x-2)+4有两个交点时,实数k的取值范围是(
5
12
3
4
]

(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,则3b-2a>1;
(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
π
12
,其中正确的结论是:
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

同步练习册答案