精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga(x+1),a>1,对于定义域内的x1,x2有0<x1<x2<1,给出下列结论:
①(x2-x1)[f(x2)-f(x1)]<0;
②x2f(x1)<x1f(x2);
③f(x2)-f(x1)>x1-x2
f(x1)+f(x2)
2
<f(
x1+x2
2
).
其中正确结论的序号是(  )
A、①②B、①③C、②④D、③④
考点:命题的真假判断与应用,对数函数的图像与性质
专题:函数的性质及应用,简易逻辑
分析:画出函数的图象,可根据函数的单调性判断①的对错;
根据
f(x1)
x1
f(x2)
x2
(图象上任意两点与原点连线的斜率)的大小判断②的正误;
再根据函数图象是凸增的,我们可判断③的真假.
解答: 解:由已知函数f(x)=loga(x+1),a>1,函数是增函数,函数的图象如图,
对于定义域内的x1,x2有0<x1<x2<1,
可得x2-x1>0,f(x2)-f(x1)>0,
∴(x2-x1)[f(x2)-f(x1)]>0;显然①不正确;
由x2f(x1)>x1f(x2
f(x1)
x1
f(x2)
x2

即表示两点(x1,f(x1))、(x2,f(x2))与原点连线的斜率的大小,
可以看出结论②正确;
结合函数图象,
由f(x2)-f(x1)>x2-x1
可得
f(x2)-f(x1)
x2-x1
>1,
即两点(x1,f(x1))与(x2,f(x2))连线的斜率大于1,
显然③不正确;
容易判断④的结论是正确的.
故选:C.
点评:本题考查的知识点是函数的图象和直线的斜率,解答的关键是结合函数图象分析结论中式子的几何意义,然后进行判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式|x+1|<6-|x-m|的解集为∅,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β是锐角,且α≠45°,若cos(α-β)=sin(α+β),则tanβ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若在定义域内存在实数x,使得f(-x)=-f(x),则称f(x)为“局部奇函数”.若f(x)=2x+m是定义在区间[-1,1]上的“局部奇函数”,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“lgx,lgy,lgz成等差数列”是“y2=xz”成立的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,4,同时投掷这两枚玩具一次,用a,b分别表示两枚玩具出现的点数,记m为两个朝下的面上的数字之积.
(I)  写出两个玩具朝下的面上数字所有可能的情况(如:一个是1,一个是2,就记作(1,2));
(Ⅱ)求事件A“m为奇数”的概率;
(Ⅲ)求事件B:“m>10,且使函数f(x)=x2+ax+b有零点”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log3(2x2+x)的单调增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球面上有S,A,B,C四点,且SA⊥平面ABC,∠ABC=90°,SC=2.则该球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数
2-3i
1-2i
=(  )
A、
4+i
3
B、
8+i
5
C、
8+i
3
D、
4+i
5

查看答案和解析>>

同步练习册答案