精英家教网 > 高中数学 > 题目详情
1.设点P对应的复数为1+i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为(  )
A.($\sqrt{2}$,$\frac{π}{4}$)B.($-\sqrt{2}$,$\frac{3}{4}π$)C.(1,$\frac{3}{4}π$)D.(-1,$\frac{π}{4}$)

分析 得出P的直角坐标,根据直角坐标与极坐标的对于关系得出极坐标.

解答 解:P的直角坐标为(1,1),
∴ρ=|OP|=$\sqrt{2}$,θ=$\frac{π}{4}$,
故选A.

点评 本题考查了极坐标与直角坐标的对应关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在二项式(x2-$\frac{1}{2x}$)9的展开式中,第4项的二项式系数是84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分以上)的成绩,试设计一个算法,并画出程序框图.
(2)目前我省高考科目为文科考:语文,数学(文科),英语,文科综合(政治、历史、地理);理科考:语文,数学(理科),英语,理科综合(物理、化学、生物).请画出我省高考科目结构图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知两条直线l1:4x+(a+3)y+(3a-5)=0,l2:(a+5)x+2y-8=0,问a为何值时,l1与l2
(Ⅰ)平行;
(Ⅱ)相交;
(Ⅲ)垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列点不在直线$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)上的是(  )
A.(-1,2)B.(2,-1)C.(3,-2)D.(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=$\frac{x^2}{{1+{x^2}}}$,利用课本中推导等差数列前n项和公式的方法,可求得f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+f(4)+f($\frac{1}{4}$)的值$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\vec a=({1,3}),\vec b=({2,5})$,则$\vec a$+$\vec b$=(  )
A.(-1,-2)B.(3,8)C.(5,5)D.(-3,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=2|x+1|-2,当f(f(x))=mx有四个解时,实数m的取值范围是(0,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}的通项an=10n+5,n∈N *,其前n项和为Sn,令${T_n}=\frac{S_n}{{5•{2^n}}}$,若对一切正整数n,总有Tn≤m成立,则实数m的最小值是(  )
A.4B.3C.2D.不存在

查看答案和解析>>

同步练习册答案