精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=$\frac{x^2}{{1+{x^2}}}$,利用课本中推导等差数列前n项和公式的方法,可求得f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+f(4)+f($\frac{1}{4}$)的值$\frac{7}{2}$.

分析 行求出f(x)+f($\frac{1}{x}$)=1,由此能求出f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+f(4)+f($\frac{1}{4}$)的值.

解答 解:∵函数f(x)=$\frac{x^2}{{1+{x^2}}}$,
∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}$=$\frac{{x}^{2}}{1+{x}^{2}}+\frac{1}{{x}^{2}+1}$=1,
∴f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+f(4)+f($\frac{1}{4}$)
=f(1)+1+1+1
=$\frac{1}{1+1}+3$=$\frac{7}{2}$.
故答案为:$\frac{7}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.《九章算术》有如下问题:有上禾三秉(古代容量单位),中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾一秉各几何?依上文:设上、中、下禾一秉分别为x斗、y斗、z斗,设计如图所示的程序框图,则输出的x,y,z的值分别为(  )
A.$\frac{37}{4},\frac{17}{4},\frac{11}{4}$B.$\frac{11}{4},\frac{37}{4},\frac{17}{4}$C.$\frac{35}{4},\frac{17}{4},\frac{9}{4}$D.$\frac{35}{4},\frac{9}{4},\frac{17}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}是等比数列,如果a2=2,a3=-6,则公比q=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等差数列{an}中,s30=930,d=2,则a3+a6+…+a30=330.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设点P对应的复数为1+i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为(  )
A.($\sqrt{2}$,$\frac{π}{4}$)B.($-\sqrt{2}$,$\frac{3}{4}π$)C.(1,$\frac{3}{4}π$)D.(-1,$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<0).
(1)若f(x)的部分图象如图所示,求f(x)的解析式;
(2)在(1)的条件下,求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数;
(3)若f(x)在[0,$\frac{π}{3}$]上是单调递增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若方程 x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.A,B,C表示3种开关并联,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为②.①0.504;②0.994;③0.496;④0.06.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{cn}为等比数列,c1=1,且c2S2=64,c3S3=960.
(1)求an与cn
(2)求$\frac{1}{S1}$+$\frac{1}{S2}$+…+$\frac{1}{Sn}$.

查看答案和解析>>

同步练习册答案